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Abstract. Inverse analysis of material parameters plays a crucial role in solid mechanics 

problems, which remain challenging and computationally expensive with conventional 

numerical approaches such as the finite element method (FEM). This paper proposes a highly 

efficient inverse analysis framework for 1D problems based on the Finite Element Informed 

Neural Network (FEINN). Unlike Physics-Informed Neural Networks (PINNs), which solve 

the strong form of governing equations, FEINN addresses the weak form through finite 

discretization and incorporates Gaussian integration to compute the strain–displacement 

matrix, thereby significantly accelerating training and convergence. In the inverse problem, 

the unknown material parameters are inferred from the neural network’s output layer, while 

the nodal coordinates serve as input. Nodal displacements and forces are employed as 

constraints within the loss function. FEINN determines the material parameters by iteratively 

optimizing the neural network using the fmincon function in MATLAB. The proposed method 

demonstrates high efficiency through several benchmark cases involving both constant and 

spatially varying material parameters. 
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Tóm tắt. Phân tích ngược các tham số vật liệu đóng một vai trò quan trọng các bài toán cơ vật 

rắn biến dạng, vốn luôn là thách thức và tốn thời gian với các phương pháp số hiện có như 

phần tử hữu hạn. Bài báo này trình bày một khuôn khổ phân tích ngược hiệu quả cao cho bài 

toán 1D dựa trên mạng nơ rơn thông tin phần tử hữu hạn (FEINN). Thay vì giải phương trình 

dạng mạnh như mạng nơ rơn thông tin vật lý (PINN), FEINN giải phương trình dạng yếu 

bằng cách rời rạc miễn hữu hạn và sau đó kết hợp tích phân Gauss để tính ma trận biến dạng – 

chuyển vị, giúp tăng tốc đáng kể quá trình huấn luyện và tốc độ hội tụ. Đối với bài toán 

ngược, các tham số vật liệu chưa biết được dự đoán ở kết quả lớp đầu ra của cấu trúc mạng nơ 

rơn trong khi giá trị lớp đầu vào là tọa độ nút phần tử. Sử dụng giá trị đã biết gồm chuyển vị 

và lực tại các nút để vào hàm điều khiển. FEINN có thể xác định các tham số vật liệu này 

bằng cách tối ưu hóa lặp lại các mạng nơ rơn bằng hàm fmincon trong thư viện Matlab. Hiệu 

quả rất cao do FEINN mang lại thông qua một số bài toán có tham số vật liệu là hằng số và 

biến thiên. 

Từ khóa: Phân tích ngược; Mạng nơ rơn nhân tạo; Phần tử hữu hạn; Bài toán 1D đàn hồi tuyến tính. 
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1. ĐẶT VẤN ĐỀ  

Bài toán ngược đóng vai trò quan trọng trong cơ học tính toán, giúp xác định các tham 

số vật liệu hoặc điều kiện biên từ các đại lượng đo được [1]. Các phương pháp số cổ điển như 

PTHH (Finite Element Method - FEM) hay phần tử biên (Boundary Element Method - BEM) 

thường gặp khó khăn khi bài toán kém xác định, dẫn đến kết quả không ổn định và tốn kém 

tính toán [1-10]. 

Sự phát triển mạnh mẽ của trí tuệ nhân tạo, đặc biệt là các mô hình mạng nơ-ron học 

sâu (Deep Neural Networks – DNN), đã mở ra những hướng nghiên cứu mới cho các bài toán 

cơ học và kỹ thuật. Tại Việt Nam, nhiều công trình gần đây công bố trên Tạp chí Khoa học 

Giao thông vận tải (TCSJ) đã chứng minh tiềm năng ứng dụng của mạng nơ-ron trong mô 

phỏng và dự đoán các hiện tượng vật lý phức tạp. Cụ thể, Hoàng Việt Hải và cộng sự [9] đã 

sử dụng mạng nơ-ron nhân tạo (Artificial Neural Network - ANN) để dự báo các tham số 

nhiệt ở giai đoạn sớm của bê tông khối lớn, giúp kiểm soát ứng suất nhiệt trong móng cầu. 

Bài báo của Trần Thế Hùng [10] áp dụng mạng nơ-ron tích chập (Convolutional Neural 

Network - CNN) để xác định trường dòng chảy xung quanh cánh khí động và các cấu trúc 

hình học phức tạp. Ngoài ra, Nguyễn Thùy Anh và nhóm nghiên cứu [11] đã triển khai ANN 

và RNN để ước tính cường độ cắt của vật liệu FRP, cho thấy độ chính xác cao và khả năng 

tổng quát tốt trong dự đoán tính chất cơ học vật liệu. 

Những kết quả trên khẳng định xu hướng kết hợp trí tuệ nhân tạo (Artificial Intelligence 

- AI) với mô phỏng số đang được quan tâm rộng rãi và dần trở thành công cụ hữu hiệu để giải 

quyết các bài toán kỹ thuật phức tạp. Trong bối cảnh đó, mô hình mạng nơ rơn thông tin phần 

tử hữu hạn (Finite Element Integrated Neural Network - FEINN) được xem là bước tiến mới, 

kết hợp ưu điểm của mạng học sâu và phương pháp phần tử hữu hạn. FEINN tích hợp dạng 

yếu của phương trình cân bằng vào hàm mất mát, sử dụng tích phân Gauss để tính toán các 

đại lượng năng lượng, giúp tăng tốc độ hội tụ và cải thiện độ chính xác [2]. Phương pháp này 

cho phép xử lý bài toán ngược trong cơ học đàn hồi với sai số nhỏ (dưới 1%) và khả năng 

tổng quát hóa cao [2,3]. 

Các nghiên cứu gần đây về mô hình lai như Neural-Integrated Meshfree (NIM) [4] hay 

Finite-PINN [6] tiếp tục mở rộng phạm vi ứng dụng của mô hình học sâu trong cơ học số. 

Bên cạnh đó, phương pháp phần tử hữu hạn Bayes (Bayesian Finite Element Method - 

BFEM) [8] cũng được phát triển nhằm xử lý bài toán ngược dưới góc nhìn xác suất, tăng độ 

tin cậy của ước lượng tham số. Nhờ các tiến bộ này, FEINN trở thành công cụ mạnh mẽ để 

giải bài toán ngược trong cơ học đàn hồi 1D, kết hợp hiệu quả giữa FEM và học sâu trong 

cùng một khung giải thuật thống nhất. 

2. CƠ SỞ LÝ THUYẾT 

Phương pháp FEINN là sự kết hợp giữa FEM với mô hình học sâu (DL), như được trình 

bày trong Hình 1. Bài toán ngược ở đây chủ yếu đi tìm độ cứng EA phân bố trong kết cấu 

thanh. Khác với bài toán thuận, trường chuyển vị (U) và lực tác dụng (F) trong trường hợp 

này được cho trước, trong thực tế chúng được đo trực tiếp từ kết cấu. Tuy nhiên, để có dữ liệu 

giám sát, trong nghiên cứu này, chúng được tính toán từ FEM như thông thường. Thuật toán 

của phương pháp được mô tả chi tiết như trong bảng 1. 
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Hình 1. Mạng nơ rơn tích hợp phần tử hữu hạn (FEINN) cho bài toán ngược. 

Bảng 1. Thuật toán FEINN cho bài toán ngược. 

Bước Mô tả 

1 Nhập tọa độ nút  và dữ liệu . 

2 Lan truyền tiến qua mạng DNN → thu được  

3 Tính ma trận độ cứng bằng FEM 

4 Tính hàm mất mát  

5 Tối ưu  bằng fmincon để giảm  

6 Nếu hội tụ → trả về . Nếu chưa → quay lại bước 2 

Đối với bài toán 1D đàn hồi tuyến tính, tọa độ của các nút (x) thu được từ phép rời rạc 

phần tử hữu hạn được đưa vào khuôn khổ FEINN để dự đoán mô đun đàn hồi EANN, có thể 

được biểu thị bằng phương trình sau: 

   |NNEA DNN x   (1) 

trong đó DNN biểu thị mạng nơ-ron sâu, và θ biểu thị các siêu tham số. Ma trận độ cứng 

K(EANN) được tính theo độ cứng EANN và ma trận tính biến dạng B như sau 

 


 
TK B B

NNNN EA dx  (2) 

Sau khi độ cứng EANN được xác định, chúng sẽ được đánh giá theo các công thức bao 

gồm sai số tuyệt đối trung bình (MAE) và sai số phần trăm tuyệt đối trung bình (MAPE) như 

sau: 
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trong đó i biểu diễn các nút thứ i, (EA)* biểu diễn giá trị độ cứng tại điểm thứ i trong thực tế, 

m biểu diễn số nút, (EA)i đề cập đến dự đoán độ cứng của FEINN tại điểm thứ i. 

3. KẾT QUẢ SỐ VÀ THẢO LUẬN 

Kết cấu khảo sát là thanh chịu lực phân bố đều dọc trục q=1kN/m và đầu trái chịu liên 

kết ngàm (Ux = 0) như hình 2. Thanh có chiều dài L=3m, độ cứng EA được gán giá trị cho 

từng bài toán cụ thể. Các dữ liệu về chuyển vị U và tải trọng F trong hàm Loss được tính toán 

bằng FEM thông thường. 

 
Hình 2. Dạng hình học của thanh chịu kéo đúng tâm. 

3.1. Độ cứng của thanh là hằng số 

Trong ví dụ đầu tiên, độ cứng của thanh được giả thiết là hằng trên toàn bộ chiều dài, 

với mô đun đàn hồi EA=10 (kN/cm² × cm²) và lưới chia gồm 10 phần tử. Kết quả huấn luyện 

mạng FEINN cho thấy một hiện tượng thú vị nhưng hoàn toàn hợp lý khi áp dụng mô hình 

học máy cho bài toán đơn giản này. Dữ liệu trong Bảng 2 chỉ ra rằng khi số lượng nơ-ron 

tăng, số bước lặp cần thiết để đạt ngưỡng sai số dừng (L<10−7) cũng tăng đáng kể. Điều này 

cho thấy việc dự đoán độ cứng không đổi không đòi hỏi một kiến trúc mạng quá phức tạp; 

ngược lại, mạng có quá nhiều tham số sẽ làm tăng chi phí huấn luyện và kéo dài quá trình hội 

tụ, trong khi kết quả cuối cùng hầu như không thay đổi. 

Bảng 2. Giá trị hàm mất mát (L) theo số Nơ rơn và số bước lặp. 

Số lớp ẩn Số nơ rơn  Số bước lặp Hàm mất mát 

1 1 30 9.09E-08 

1 3 64 8.19E-08 

1 5 165 8.05E-08 

1 20 1159 9.95E-08 

3.2. Độ cứng của thanh là hàm bậc 2 

Trong thí nghiệm này, mô đun đàn hồi phân bố theo quy luật bậc hai EA(x), phản ánh 

tính không đồng nhất theo chiều dài của thanh. Mạng FEINN được cố định ở kiến trúc 

[1  5  5  1] (1 đầu vào là tọa độ nút x; 2 lớp ẩn, mỗi lớp 5 nơ-ron; 1 đầu ra là EA tại nút), mô 

hình được huấn luyện với tối đa 2000 bước lặp và điều kiện hàm L<1e-5.  Mô hình cũng được 



Tạp chí Khoa học Giao thông vận tải, Tập 76, Số 09 (12/2025), 1163-1172 

1168 

chia lưới với 10 phần tử. 

 
Hình 3. Hàm mất mát (hàm mục tiêu) theo thời gian và phân bố độ cứng EA chính xác cũng như 

dự đoán tại các vòng lặp 5, 20, 100 và cuối cùng. 

 
Hình 4. Quá trình hội tụ MAPE và MAE theo số bước lặp. 

Hình 3 mô tả quá trình hội tụ của mô hình FEINN trong bài toán thanh 1D có mô đun 

đàn hồi biến thiên bậc hai theo tọa độ. Giá trị hàm mục tiêu giảm nhanh trong khoảng 0–200 

vòng lặp, sau đó giảm chậm dần và đạt điều kiện dừng tại vòng lặp thứ 1802. Các đồ thị nhỏ 

cho thấy mô đun đàn hồi dự đoán tiến dần đến giá trị thực theo thời gian huấn luyện: ở các 

bước đầu (5–20) sai lệch còn lớn, đến khoảng 100 vòng lặp đường dự đoán đã gần khớp, và 

tại vòng 1802 hai đường hầu như trùng nhau. Kết quả này cho thấy mạng FEINN có khả năng 

học ổn định và mô phỏng chính xác quy luật biến thiên phi tuyến của vật liệu chỉ với một kiến 

trúc cố định [1 5 5 1]. Tương tự, hình 4 cho thấy cả hai chỉ số MAPE và MAE đều giảm nhanh 
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trong giai đoạn đầu và tiếp tục giảm ổn định cho đến khi đạt trạng thái hội tụ sau khoảng 1800 

vòng lặp. Sai số nhỏ dần theo thang log chứng tỏ mô hình FEINN học hiệu quả và duy trì quá 

trình tối ưu ổn định trong suốt quá trình huấn luyện. Có thể thấy rằng sai số tuyệt đối giảm 

dần theo số vòng lặp và đạt giá trị rất nhỏ khi mô hình hội tụ được mô tả như Hình 5. Sai số 

lớn tập trung tại đầu tự do của thanh, nơi chuyển vị lớn hơn và độ nhạy của ma trận độ cứng 

đối với biến thiên mô đun đàn hồi cao hơn, dẫn đến sai khác dự đoán tăng nhẹ so với phần 

còn lại. 

Hình 5 thể hiện phân bố sai số tuyệt đối theo tọa độ nút tại các giai đoạn huấn luyện 

khác nhau. Có thể thấy sai số giảm dần rõ rệt khi số vòng lặp tăng, đặc biệt sau 100 vòng lặp 

đường sai số gần như tiến sát trục hoành. Đến vòng lặp 1802, sai số gần bằng không trên toàn 

miền, cho thấy mạng FEINN đã mô phỏng chính xác quy luật biến thiên của mô đun đàn hồi 

theo tọa độ. Ngoài ra, sai số nhỏ tập trung chủ yếu ở vùng đầu trái của thanh – vị trí có liên 

kết, nơi chuyển vị bị khống chế nên ảnh hưởng của sai số tính toán được giảm thiểu rõ rệt. 

 

Hình 5. Phân bố sai số tuyệt đối theo chiều dài thanh. 

3.3. Thanh có độ cứng giảm yếu cục bộ  

Nhằm đánh giá tính ứng dụng vào thực tế của mô hình FEINN vào việc dự đoán độ 

cứng của kết cấu thanh, một thanh có vấn đề về hư hỏng được đặt trưng bởi sự giảm yếu của 

mô đun đàn hồi. Giả định rằng độ cứng có sự phân bố như Hình 6 (đường màu đen) với sự 

giảm yếu độ cứng tại giữa dầm. Mô hình FEINN có cấu trúc [1 15 15 15 15 1] được huấn 

luyện với 8000 bước lặp. 

Hình 6 thể hiện quá trình hội tụ của các chỉ số sai số MAE và MAPE theo số vòng lặp. 

Có thể thấy cả hai chỉ số đều giảm rất nhanh trong giai đoạn đầu, đặc biệt trong khoảng từ 0 

đến khoảng 2000 vòng lặp, cho thấy mạng FEINN nhanh chóng học được quy luật tổng quát 

của phân bố vật liệu. Sau mốc này, các đường cong gần như nằm ngang, biểu hiện việc sai số 

không còn giảm đáng kể — mô hình đã đạt trạng thái hội tụ và các tham số mạng chỉ dao 

động nhỏ quanh giá trị tối ưu. Điều này chứng tỏ quá trình huấn luyện ổn định, đồng thời xác 
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nhận rằng số vòng lặp khoảng 2000 là đủ để mô hình đạt độ chính xác mong muốn mà không 

cần huấn luyện thêm. 

Hình 7 thể hiện phân bố độ cứng dọc theo chiều dài thanh, trong đó mô hình FEINN 

được sử dụng để nhận dạng sự thay đổi của mô đun đàn hồi EA(x). Độ cứng của thanh giảm 

mạnh tại vị trí x≈1,5m, biểu hiện vùng suy yếu hoặc hư hại cục bộ của kết cấu. Các đường dự 

đoán ở các mốc vòng lặp khác nhau cho thấy quá trình hội tụ rõ ràng: ở giai đoạn đầu (bước 

10 và 200), mạng chưa tái hiện được vị trí và biên độ của vùng hư hại, giá trị dự đoán còn 

thấp và phân bố mượt hơn so với thực tế. Khi số vòng lặp tăng (bước 1000 và 8000), đường 

dự đoán tiệm cận gần như trùng khớp với giá trị đúng, phản ánh khả năng của FEINN trong 

việc xác định chính xác vị trí và mức độ giảm độ cứng – đặc trưng cho sự hư hại của thanh. 

Kết quả này cho thấy mô hình không chỉ mô phỏng chính xác vùng vật liệu đồng nhất mà còn 

nhận dạng tốt các khu vực suy yếu có tính cục bộ cao. 

 

Hình 6. Quá trình hội tụ MAE và MAPE theo vòng lặp. 

 
Hình 7. Phân bố độ cứng của thanh. 

Hình 8 cho thấy sai số tuyệt đối tập trung chủ yếu tại vùng giữa thanh, tương ứng với vị trí 

x≈1,5 m– nơi độ cứng giảm mạnh do hư hại cục bộ. Sai số tăng vọt tại khu vực này phản ánh 
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đặc tính phi tuyến và độ dốc lớn của hàm E(x), khiến mô hình khó xấp xỉ chính xác trong 

vùng chuyển tiếp. Ở các vùng còn lại, sai số gần bằng không, chứng tỏ mạng FEINN mô 

phỏng rất tốt phần vật liệu đồng nhất của kết cấu. 

 

Hình 8. Phân bố sai số tuyệt đối theo tọa độ nút. 

4. KẾT LUẬN 

Mô hình FEINN được trình bày trong nghiên cứu này cho thấy tính hiệu quả và linh hoạt 

cao trong việc kết hợp giữa phương pháp phần tử hữu hạn và mạng nơ-ron nhân tạo. Việc tích 

hợp dạng yếu của phương trình cân bằng vào quá trình huấn luyện giúp mô hình duy trì được 

cơ sở vật lý của bài toán, đồng thời tận dụng khả năng học phi tuyến của mạng nơ-ron để giải 

các bài toán ngược trong cơ học vật liệu một cách ổn định và chính xác. 

Kết quả số cho thấy FEINN nhận dạng chính xác phân bố mô đun đàn hồi trong cả ba 

trường hợp: vật liệu đồng nhất, vật liệu biến thiên theo quy luật bậc hai và kết cấu có vùng 

giảm yếu cục bộ. Các chỉ số MAE, MAPE và hàm mục tiêu đều giảm nhanh trong giai đoạn 

đầu và đạt trạng thái hội tụ ổn định, trong khi phân bố sai số theo không gian được kiểm soát 

tốt, tập trung chủ yếu tại các vùng có độ dốc lớn của hàm độ cứng hoặc tại các vị trí nhạy cảm 

của kết cấu. Khả năng tái hiện đúng vị trí và biên độ vùng suy yếu chứng tỏ FEINN có tiềm 

năng lớn trong nhận dạng hư hại và đánh giá độ cứng của kết cấu thanh. Tuy nhiên, mặc dù 

đạt hiệu quả cao, phương pháp FEINN vẫn phụ thuộc đáng kể vào kiến trúc mạng và thuật 

toán tối ưu, khiến chi phí huấn luyện có thể tăng mạnh khi mô hình được mở rộng cho các bài 

toán có mức độ phi tuyến hoặc hình học phức tạp. Nhằm nâng cao khả năng ứng dụng trong 

tương lai, nghiên cứu đề xuất phát triển các kỹ thuật tăng tốc huấn luyện và mở rộng FEINN 

sang không gian 2D–3D để xử lý hiệu quả hơn các bài toán ngược thực tế và nhận dạng hư 

hại phức tạp trong cơ học kết cấu. 
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