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Abstract. Advanced composite materials, with their superior strength-to-weight ratio, 

durability, and thermal resistance, are increasingly applied in civil engineering for 

withstanding harsh mechanical and environmental loads. This paper presents a nonlinear 

stability analysis of cylindrical panels made from a new type of composite material, namely, 

functionally graded graphene-reinforced metal matrix composite (FG-GRMMC). The panels 

are stiffened by oblique or orthogonal FG-GRMMC stiffeners. The fundamental formulation 

is developed using higher-order shear deformation theory (HSDT), incorporating von Kármán 

geometric nonlinearity. The effects of stiffeners are modeled using an enhanced smeared 

stiffener technique for both mechanical and thermal effects through coordinate 

transformation. The governing equations are derived and solved using the Ritz energy 

method. Different graphene distribution patterns and stiffener orientations are systematically 

investigated to evaluate their effects on critical buckling and postbuckling responses. The 

results highlight the significant improvements in structural stability achieved through the use 

of oblique stiffeners and optimized material, particularly under thermal loading conditions. 
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1. INTRODUCTION  

Functionally graded materials (FGMs) are an advanced class of composite materials. 

Their material properties vary continuously, allowing for tailored thermomechanical 

properties throughout the structure. Among FGMs, functionally graded carbon nanotube-

reinforced composites (FG-CNTRCs) and graphene-reinforced composites (FG-GRCs) have 

been widely studied due to their high stiffness and excellent thermal conductivity. Recently, 

functionally graded graphene-reinforced metal matrix composites (FG-GRMMCs) have 

emerged as a promising material. They combine the reinforcement efficiency of graphene 

platelets with the high strength and ductility of metal matrix. The result is enhanced structural 

stability in thermal environments. 

The nonlinear buckling and postbuckling behavior of FGM cylindrical panels in thermal 

environments has been extensively studied using advanced analytical techniques. Shen and 

Wang [1,2] employed higher-order shear deformation theory (HSDT) and von Kármán 

geometric nonlinearity to investigate thermomechanical responses of FGM panels on elastic 

foundations. Norouzi and Alibeigloo [3] used three-dimensional elasticity theory and state-

space approaches to capture viscoelastic effects, while Zhang et al. [4] and Mirzaei and 

Seyedi [5] analyzed thermally induced dynamic responses using Chebyshev-Ritz and 

Newmark integration methods. Bich et al. [6] analyzed the nonlinear dynamic buckling 

behavior of eccentrically stiffened FGM cylindrical panels using von Kármán–Donnell 

kinematics and the smeared stiffener approach, highlighting the role of imperfections and 

stiffener configuration. Furthermore, Dong et al. [7] developed an analytical framework for 

thermomechanical buckling of obliquely stiffened sandwich FGM plates on nonlinear elastic 

foundations, incorporating HSDT, von Kármán nonlinearity, and an extended Lekhnitskii 

smeared stiffener model with coordinate transformation. The governing equations of the 

problem were solved using the Galerkin method. 

FG-CNTRC structures have been widely explored for their nonlinear mechanical 

responses under thermal and mechanical loading. Babaei [8] and Keleshteri et al. [9] 

investigated snap-buckling and snap-through phenomena in FG-CNTRC panels and plates 

using HSDT and perturbation or differential quadrature methods, under the influences of CNT 

distribution, boundary constraints, and foundation effects. Shen and Xiang [10,11] presented 

thermal postbuckling analyses of FG-CNTRC cylindrical panels resting on elastic 

foundations, employing micromechanical modeling, HSDT, and singular perturbation 

techniques. Nonlinear vibration and buckling of imperfect FG-CNTRC panels were addressed 

by Foroutan et al. [12] using Galerkin and Runge-Kutta methods, with attention to the 

distribution law of CNTs and an initial imperfection. Minh et al. [13] extended the smeared 

stiffener technique for oblique FG-CNTRC stiffeners to investigate the nonlinear stability 

behavior of stiffened plates using analytical solutions and Reddy’s HSDT. Duc et al. [14] 

examined nonlinear dynamics of CNT-reinforced panels with complex curvature, 

piezoelectric layers, and CNT-reinforced stiffeners, using an advanced homogenization 

technique and dynamic buckling criteria to obtain complex structural responses. 

FG-GRC and FG-GRMMC have attracted much attention due to their exceptional 

mechanical properties and the ability to tune the stiffness by continuously varying the 

Graphene content along the thickness. Shen et al. [15–17] investigated the thermal 

postbuckling behavior of FG-GRC and FG-GRMMC cylindrical panels using HSDT and von 

Kármán nonlinearity, taking into account the effects of temperature-dependent material 
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properties, elastic foundations, and auxetic in-plane Poisson’s ratio based on the singular 

perturbation technique. Phuong et al. [18] developed the smeared stiffener technique for 

stiffened FG-GRC laminated plates with anisotropic stiffeners, employing the Galerkin 

method to analyze the nonlinear postbuckling response problem.  

Although numerous works have addressed the nonlinear stability of stiffened FGM 

structures, to the best of the authors’ knowledge, no studies have investigated FG-GRMMC 

cylindrical panels reinforced with oblique stiffeners. In addition, most previous studies have 

focused on isotropic orthogonal stiffeners, without comprehensive studies on the benefits of 

oblique FG-GRMMC stiffeners. This study develops an analytical model based on HSDT and 

von Kármán nonlinearity, incorporating a transformed smeared stiffener technique and Ritz 

method, to analyze the buckling and postbuckling behavior of FG-GRMMC cylindrical panels 

under mechanical loads in thermal environments. The influences of stiffener orientation, 

graphene distribution laws, geometric and material parameters are investigated in detail. 

2. THEORETICAL MODELLING AND RITZ-BASED SOLUTION  

This study considers stiffened FG-GRMMC cylindrical panels, subjected to external 

pressure and axial compression. The geometric parameters include the thicknessh , straight 

edge lengtha , and curved edge lengthb . Two types of stiffener arrangements are considered, 

including orthogonal and oblique stiffener systems, as illustrated in Fig. 1. Due to the 

shallowness of the cylindrical panel, a Cartesian coordinate system  , ,x y z  is adopted, with 

the origin located at the mid-surface of the panel. The panels are subjected to a thermal 

environment with a uniform temperature change of T .  

Graphene sheets (GRSs) are reinforced in a copper (Cu) matrix, with volume fractions 

varying from 0.05 to 0.13, and are distributed separately across ten layers along the panel 

thickness. Five graphene distribution types are considered in this paper. FG-V and FG-A 

types are characterized by asymmetric volume fraction distribution of GRSs along the 

thickness; FG-X and FG-O types, following symmetric GRSs distribution types; and the 

uniform distribution of GRSs case corresponding to a constant volume fraction across all 

layers.  To ensure material continuity in the panel and stiffeners, five material models of the 

stiffened panel are considered in this study, including UD/UD, X/X, O/O, V/Λ, and Λ/V, 

depicted in Figure 1. In addition, the orientation of graphene sheets in the polymer matrix is 

also varied, with three specimens of the FG-GRC panel/ stiffener being unidirectional (0)10T, 

cross-ply (0/90)5T, and symmetric cross-ply (0/90/0/90/0)S. Thermoplastic properties for the 

GRMMC are adopted from Fan et al. [19]. 

The panel is assumed to be moderately thick and geometrically imperfect strain–

displacement relations are established based on HSDT, taking into account the von Kármán 

nonlinear strain terms and initial geometric imperfections 
*w as  
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Hooke’s law is applied to both the panel and stiffeners, incorporating thermal strain 

effects, expressed as 
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where  ij kQ  denotes the reduced stiffness  of the k -th GRMMC layer. 
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technique (based on Lekhnitskii smeared stiffener technique with a coordinate transformation 

method) to include both mechanical and thermal contributions as follows 
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Fig. 1. Configuration, coordinate system, and stiffener design of FG-GRMMC cylindrical panels. 

The expressions for shear forces and higher-order shear forces are given by 
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where  k  are the domains of integration in the thickness direction of the GRMMC layers, 

respectively, and 
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with  k  is the domain of integration in the thickness direction of the stiffeners. 

The nonlinear compatibility equation for the imperfect panel is derived from Eq. (2) as 

0 0 0 2 2* * *
, , , , , , , , , , , , ,ˆ ˆ ˆ .x yy y xx xy xy xy xx xx yy xx yy xy xy xx yyw w R w w w w w w w w             (6) 

An Airy stress function  ,x y  is introduced, satisfying 

          , , ,, , .x yy xy xy y xxN N N                             (7) 

Using Eqs. (4) and (7), the compatibility equation (6) is reformulated as 
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   (8) 

In this analysis, FG-GRMMC cylindrical panels are examined under two different 

boundary conditions. 

Case 1: All four edges are simply supported and freely movable (FFFF), leading to 
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 (9) 

Case 2: Two opposite edges 0,x x a   are simply supported and freely movable  in x  

and y  directions, while the other two 0,y y b   are simply supported and immovable in y  

direction (FIFI), with the corresponding conditions 
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To satisfy the boundary conditions, the deflection, rotation, and initial imperfection 

shapes are assumed in the form  

1

 

ˆ ˆˆ ˆsin sin , sin sin ,

ˆ ˆˆ ˆcos sin , sin cos ,x x y y

w W x y w h x y

x y x y
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                              (11) 
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where ˆˆ ,m a n b      , m  and n  are buckling mode numbers in the x  and y  

directions, respectively; W , x  and y  are the corresponding amplitudes of deflection and 

rotations; and   is a dimensionless imperfection parameter. 

By substituting Eq. (11) into Eq. (8), the stress function is obtained as 

2 2
1 2 3 0 0

1 1
2 2

2 2
cos cos sin sin .y xx y x y N x N y                        (12) 

where 
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The average sense boundary conditions for immovable edges under FFFF and FIFI 

conditions are expressed as 
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The total strain energy in  of the panel and the potential energy ext  due to external 

loading are evaluated as 
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  0
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b a b a
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The Ritz energy method is applied via the total potential energy Total in ext    , as 

0,Total Total Total

x yW
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  
                                     (16) 

From Eq. (16), the governing equations are derived in the forms 
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 22 23 24 25 0 26 0 22 71 2 0,x y x yJ W J J J W W h J TN J N J          (18) 

 23 33 34 35 0 36 0 33 71 2 0,x y x yJ W J J J W W h J TN J N J           (19) 

Eqs. (17)-(19) are applicable to both boundary conditions. For FFFF, 0x xN P h    and 

0 0yN   are used for the FIFI case 0x xN P h   is applied. Solving ,x y   from Eqs. (18) 
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and (19) and substituting into Eq. (17) yields. The expression of the axial compression 

postbuckling curve is obtained in the forms 
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 (20) 

Similarly, the expression of the external postbuckling curve is  
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 (21) 

In the case of a perfect panel without stiffener with 1  = 0, 2  = 0 and 0  , the critical 

buckling load cr
xP  is received by applying 0Ŵ   as 

11 12

17

cr
x

e e T
P

e h

 
                   (22) 

3. INVESTIGATION RESULTS AND DISCUSSIONS 

Table 1. Comparisons of critical buckling loads 
cr cr
x xP P bh  (kN) of unstiffened FG-GRMMC 

laminated cylindrical panels ((0)10, h =3mm, 20a h  , 0 8.b a  , 0 8.a R  , m =1, n=1). 

T (K) References UD FG-X FG-O 

300 Shen and Xiang [15] 709.81 775.33 654.51 

 Present 711.13 774.71 654.17 

500 Shen and Xiang [15] 673.93 749.57 619.15 

 Present 672.73 725.82 613.18 

700 Shen and Xiang [15] 635.97 696.24 580.35 

 Present 633.64 693.92 578.22 

Table 1 presents a comparison of the critical buckling loads for unstiffened FG-GRMMC 

cylindrical panels between the present study and the results reported by Shen and Xiang [15], 

under various thermal environments. In Ref. [15], the authors applied HSDT combined with 

von Kármán geometric nonlinearity and the singular perturbation technique to obtain 

analytical solutions for thermomechanical postbuckling behavior. These results validate the 

accuracy of the formulas established in the present study. 

Table 2 examines the effect of temperature on the critical buckling load of unstiffened 

FG-GRMMC cylindrical panels with different graphene distribution patterns and the GRC 
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direction arrangements. The results demonstrate that the critical loads of x - and y -stiffened 

cylindrical panels are approximately equal. These loads decrease as the temperature increases. 

In addition, among the three investigated material distribution types, the critical buckling 

loads of the FG-X type are the largest, and those of the FG-O type are the smallest. 

Table 2. Critical buckling loads cr
xP  (MPa) of unstiffened FG-GRMMC laminated cylindrical panels 

( h =3mm, 20a b h  , 0 1.R a , m =1, n=1). 

T (K) Type UD FG-X FG-O 

300 
(0)10 1779.17 2043.04 1523.47 

(0/90/0/90/0)S 1779.20 2043.06 1523.50 

500 
(0)10 1681.25 1909.58 1427.68 

(0/90/0/90/0)S 1681.28 1909.60 1427.69 

700 
(0)10 1583.99 1834.01 1336.93 

(0/90/0/90/0)S 1584.00 1834.02 1336.95 

1000 
(0)10 1415.06 1620.31 1177.72 

(0/90/0/90/0)S 1415.14 1620.43 1177.79 

Figure 2 illustrates the postbuckling responses of FG-GRMMC cylindrical panels with 

different stiffener types, where the number of stiffeners in each is denoted by stn . It is clear 

that both orthogonal and oblique stiffeners significantly increase the axial compressive load 

capacity (Figure 2(a)) and external pressure load capacity (Figure 2(b)) compared to the case 

of the unstiffened panel. Notably, the postbuckling curves of the stiffened panels with oblique 

stiffeners are always higher than those of the orthogonally stiffened panels. This improvement 

is due to the ability of oblique stiffeners to provide multidirectional stiffness and more 

effective load distribution.  

 

(a)                                                                           (b) 

Figure 2. Effects of stiffener types on the axially compressed and externally pressed postbuckling 

behavior. 

Figure 3 examines the influence of graphene distribution patterns on the postbuckling 

behavior of the stiffened panel with the oblique stiffeners. Among the considered types, the 

axially compressed and externally pressed postbuckling curves of the V/A stiffened panel are 

the highest, and those of the A/V stiffened panels are the lowest. Meanwhile, no significant 

difference is noted for all three distribution types of X/X, UD/UD, and O/O. 

Figure 4 investigates the effect of stiffener angle on the nonlinear postbuckling response 

of stiffened cylindrical panel. In Figure 4(a), increasing the stiffener angle is proportional to 

the increase in the axial compressive load capacity of the cylindrical panels. Meanwhile, 

Figure 4(b) illustrates that under pressure loading, the angle effect of the stiffener is non-



Transport and Communications Science Journal, Vol.77, Issue 01 (01/2026), 70-84 

81 

linear and more difficult to predict. The externally pressed postbuckling curve is the highest 

corresponding to 4/   .  

 

(a)                                                                           (b) 

Figure 3. Effects of GRC distribution types on the axially compressed and externally pressed 

postbuckling behavior. 

 
(a)                                                                           (b) 

Figure 4. Effects of stiffener angles on the axially compressed and externally pressed postbuckling 

behavior. 

 
(a)                                                                           (b) 

Figure 5. Effects of environment temperatures on the axially compressed and externally pressed 

postbuckling behavior. 

Figure 5 shows the impact of environmental temperature on the mechanical postbuckling 

curves of a stiffened cylindrical panel. The observed trends are similar to those in Table 2. 

The axially compressed and externally pressed postbuckling curves are lower as the 

temperature increases. The cause is the softening of materials due to temperature, particularly 

with metal matrix. The result is a reduction in the structure's stiffness, which leads to a 

decreased ability to capacity mechanical loads. 
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(a)                                                                           (b) 

Figure 6. Effects of geometric parameters of stiffeners on the axially compressed and externally 

pressed postbuckling behavior. 

Figure 6 analyzes the effect of stiffener geometry, such as thickness and spacing between 

stiffeners. Figure 6(a) shows that increasing the number of stiffeners, i.e., increasing the 

number of stiffeners, will improve the bending resistance after axial loading, because the 

additional stiffener will improve the local bending stiffness. Figure 6(b) shows that the 

thickness of the stiffener is proportional to the load-carrying capacity of the stiffened 

cylindrical panel for both orthogonal and oblique stiffeners. 

 
(a)                                                                           (b) 

Figure 7. Effects of geometric parameters on the axially compressed and externally pressed 

postbuckling behavior. 

Figure 7 shows the effect of the edge length of the panel on the axial compressive and 

external pressure load capacity. It is clear that as the length of the edges increases, i.e., the 

/a h  ratio increases, indicating that the panel is thinner, leading to a significant reduction in 

the mechanical load capacity of the panel. In addition, a faint difference between the 

mechanical postbuckling curves of the perfect panel and the imperfect panel is also observed 

in Figures 7(a) and 7 (b). 

4. CONCLUSIONS 

This study developed an analytical model for the nonlinear buckling and postbuckling 

problem of FG-GRMMC cylindrical panels stiffened by orthogonal or oblique stiffeners, 

using HSDT, von Kármán nonlinearity, and the Ritz method. The contribution of stiffeners is 

modeled by applying an improved smeared stiffener technique with coordinate 

transformation. Numerical results highlighted several key findings: 
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1) Oblique stiffeners provide superior postbuckling performance compared to orthogonal 

ones. 

2) The FG-X unstiffened cylindrical panel and the V/A stiffened cylindrical panel have 

the best load-carrying capacity among the considered material models in the paper. 

3) Temperature significantly reduces the axial compressive and external pressure load 

capacities of stiffened cylindrical panels. 

Further studies may consider alternative modeling strategies such as discrete stiffener 

finite element modeling, equivalent orthotropic layer methods, or artificial intelligence-based 

optimization frameworks to complement the current analytical approach. 
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