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Abstract. In digital IC design, low-power CORDIC-based multipliers have attracted 
significant attention due to their potential to integrate approximate adders for reducing energy 

and area costs. While CORDIC is hardware-efficient, its precise design still has room for 
improvement, particularly in terms of power consumption and area overhead. To address this, 
we present an approach to enhance the CORDIC multiplier using Approx. Adders from the 

EvoApproxLib library. The proposed design offers multiple variants with different 
optimization targets: up to 19.3% power reduction in CORDIC + Approx. Adder, 11.5% area 

savings in CORDIC + Approx. Adder, and 14.7% frequency improvement in CORDIC + 
Approx. Adder compared to the conventional exact CORDIC multiplier. When applied to 
Gaussian filtering and Sobel edge detection, optimal variants such as CORDIC + Approx. 

Adder and CORDIC + Approx. Adder yield PSNR values of 60 and 48 dB respectively, with 
SSIM values exceeding 0.990, indicating minimal quality loss. The evaluation shows that 8–

10 iterations provide the best efficiency-accuracy trade-off, enabling designers to select 
appropriate variants based on specific application requirements. These results demonstrate 
the effectiveness of the proposed method for energy-constrained, error-tolerant systems in 

IoT devices, edge computing, and image processing applications. 
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1. INTRODUCTION  

Low-power design is essential in today’s electronics landscape, particularly for portable 
gadgets like smartphones, wearables, IoT sensors, and medical implants, where constantly 

recharging or swapping out batteries just is not feasible [1]. It helps cut down on energy costs 
for both personal devices and larger systems, like data centers, while also reducing the need for 
complicated cooling systems. By consuming less power, we not only generate less heat but also 

boost system reliability and prolong the lifespan of the hardware. Moreover, it plays a vital role 
in supporting environmental sustainability by lowering energy consumption and carbon 

emissions. In the fiercely competitive market we have today, being energy-efficient is a 
significant edge, making low-power design crucial for both technical performance and 
commercial success [2]. 

The CORDIC (COordinate Rotation DIgital Computer) algorithm is an efficient method 
for implementing multiplicative functions in digital hardware [3]. By replacing multipliers with 

shift-add operations, it significantly reduces both power and area costs, up to 76.69% in power 
and 63.64% in area in various FPGAs [4]. These gains come from lower switching activity and 
simpler arithmetic units. CORDIC supports linear, hyperbolic, and rotational modes, enabling 

it to perform multiplication, division, square roots, and complex functions without multipliers. 
Its efficiency and flexibility make CORDIC well suited for FFTs, DSPs, graphics, and 

communication systems, especially in power-constrained environments [3]. 

Although CORDIC is hardware-efficient, its iterative nature leads to high latency and 
energy consumption, and the need for more iterations and complex control for high precision 

and limited convergence range makes it less suitable for modern, low-power, and precision-
critical applications like neural networks and edge devices [5]. Conventional CORDIC is 
limited in neural network applications due to its fixed-iteration and sequential design. It applies 

uniform high-precision computation to all activation functions, even when lower precision is 
sufficient. This leads to unnecessary energy consumption and hardware overhead [6]. Its 

sequential nature also conflicts with the parallel structure of modern neural accelerators, 
especially in MAC units. As a result, additional synchronization is required, increasing power 
and area costs [7]. CORDIC also lacks scalability and flexibility for large models like 

transformers, which demand dynamic precision and adaptive computation. These limitat ions 
reduce its suitability for modern AI systems [3]. 

Approximate computing reduces energy use and improves performance by allowing small 
errors in computation [8]. Many AI and signal processing tasks, like image recognition and 
neural networks, tolerate such errors due to their statistical or perceptual nature [9]. This enables 

simpler hardware and lower power consumption. Approx. Adders and multipliers have shown 
good energy savings with minimal loss in accuracy, especially in MAC operations [10]. Recent 

work also links approximate computing to better noise resilience. These benefits make it well-
suited for low-power, error-tolerant applications [11], [12]. 

There is a clear gap in research on applying Approx. Adders within CORDIC for 

multiplication. While CORDIC and approximate arithmetic have been studied independently, 
their integration remains largely unexplored. This represents a missed opportunity to enhance 

energy efficiency and noise tolerance in low-power systems such as IoT and edge devices [13]. 
CORDIC’s shift-add structure and inherent error resilience make it a good candidate for 
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approximate computing. Incorporating Approx. Adders could enable more efficient and power-

aware designs for AI and signal processing applications [14]. 

The main contributions of this paper are as follows: 

 A novel CORDIC-based multiplier architecture that integrates Approx. Adders to 
improve power and area efficiency. 

 A comprehensive evaluation of the trade-offs between computational accuracy and 
hardware efficiency (power, area, and delay). 

The organization of the paper is as follows: Section 2 shows our proposed design. Then,  

section 3 presents the evaluation results and section 4 concludes the paper. 

2. PROPOSED FRAMEWORK 

2.1. CORDIC Algorithm Overview 

The COordinate Rotation DIgital Computer (CORDIC) algorithm is a shift-add method 
that enables efficient hardware implementation of mathematical functions without multipliers  

[3]. CORDIC computes vector rotations through iterative micro-rotations using only addition, 
subtraction, bit-shifting, and table lookups, significantly reducing hardware complexity and 

power consumption [15]. 

CORDIC operates in rotation mode (computing sine, cosine, complex multiplication) and 
vectoring mode (computing magnitude and phase). It supports three coordinate systems: 

circular (trigonometric functions), linear (multiplication/division), and hyperbolic 
(exponentials/logarithms), each sharing a unified iterative structure [16]. 

2.2. Approximate Computing Fundamentals 

Approximate computing is a design paradigm that intentionally introduces controlled 
inaccuracies into computations to reduce energy consumption, delay, and hardware complexity. 

This approach is particularly effective in applications that exhibit inherent error resilience, such 
as image processing and neural networks, where perfect accuracy is not always required. 

Approx. Adders are key components in approximate arithmetic units. They are broadly 
categorized as follows [17]: 

1) Speculative adders: These designs predict carry signals over a truncated bit-slice to 

reduce carry propagation delay. Examples include the Almost Correct Adder (ACA) and Error-
Tolerant Adder (ETA) families [18]. 

2) Segmented adders: The adder is divided into accurate and approximate segments, with 
the carry chain truncated between them. This segmentation shortens the critical path while 

maintaining partial accuracy [19]. 

3) Carry-select Approx. Adders: These compute partial sums under both possible carry- in 
conditions and select the result using a predicted carry signal. The Speculative Carry-Select 
Adder (SCSA) is a well-known example [20]. 

4) Approximate full-adder based designs: These modify sum or carry logic in the least 
significant bits. Examples include the Lower-part OR Adder [19] and Heterogeneous Block-
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based Approx. Adders (HBAA) [21], which use varied sub-adder configurations to achieve 

Pareto-optimal trade-offs between accuracy and efficiency. 

2.3. CORDIC Multiplier Architecture 

Our CORDIC multiplier architecture is shown in Fig. 1 and Algorithm 1. We use a basic 
sequential architecture to update y and 𝑧_{𝑠𝑐𝑎𝑙𝑒𝑑}  through multiple iterations, where the 

updated values are determined by the current iteration number and the sign of  𝑧_{𝑠𝑐𝑎𝑙𝑒𝑑}.  

 
Figure 1. CORDIC Multiplier Architecture. 

Algorithm 1: CORDIC-based Multiplication of  𝒙 .𝒛 

INPUT: values 𝑥, 𝑧; number of iterations 𝑛; number of bits for representation 𝑁. 

OUTPUT: approximate product  𝑦𝑠𝑐𝑎𝑙𝑒𝑑  ≈  𝑥 .𝑧. 

1 CALCULATE NORMALIZATION FACTOR: 𝑘 =  2𝑁−1  

2 INITIALIZE: 𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑧

2𝑘  

3 INITIALIZE: 𝑦 =  0 

4 FOR 𝑖 =  0 TO 𝑛 −  1 DO: 

       𝑑 =  𝑠𝑖𝑔𝑛(𝑧𝑠𝑐𝑎𝑙𝑒𝑑) 

       𝑦 =  𝑦 +  𝑑 . (𝑥 .2−1  ) 

       𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑧𝑠𝑐𝑎𝑙𝑒𝑑  −  𝑑 . 2−𝑖 

5  RESCALE: 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑦 .  2𝑘 

6 RETURN: 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 
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To help illustrate the algorithm, consider a simple example where 𝑥 =  5, 𝑧 =  3, and the 

number of iterations is 𝑛 =  3. 

Initialization: 

 𝑘 = 4 (normalization factor) 

 𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =
3

4
= 0.75 

 𝑦 = 0 (accumulator) 

Iteration 1 (i = 0): 

 𝑑 =  𝑠𝑖𝑔𝑛(0.75)  =  +1 

 𝑦 =  0 +  1 ·  (5 ·  20) =  0 +  5 =  5 
 𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =  0.75 −  1 ·  20 =  0.75 −  1 =  −0.25 

Iteration 2 (i = 1): 

 𝑑 =  𝑠𝑖𝑔𝑛(−0.25)  =  −1 

 𝑦 =  5 +  (−1) ·  (5 ·  2 − 1)  =  5 −  2.5 =  2.5 

 𝑧𝑠𝑐𝑎𝑙𝑒𝑑 = −0.25 −  (−1) ·  2 − 1 = −0.25 +  0.5 = 0.25 

Iteration 3 (i = 2): 

 𝑑 =  𝑠𝑖𝑔𝑛(0.25)  =  +1 
 𝑦 =  2.5 +  1 ·  (5 ·  2 − 2)  =  2.5 +  1.25 =  3.75 

 𝑧𝑠𝑐𝑎𝑙𝑒𝑑 = 0.25 −  1 ·  2 − 2 = 0.25 −  0.25 = 0 

Final Result: 

 𝑅𝑒𝑠𝑐𝑎𝑙𝑒: 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 = 3.75 ×  4 = 15 

 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡: 5 ×  3 =  15 

This example demonstrates how the algorithm approximates multiplication using only shift 

and add operations. 

2.4. Approx. Adder Integration 

1) Cordic Multiplier with Approx. Adder: In this paper, we proposed using an Approx. 

Adder to calculate the update of y in each iteration. Algorithm 2 shows the proposed multiplier.  

Since the signed adders for the updates of y  are restricted to 16-bit adders only, we 

restricted the multiplier to use an 8-bit input. In this study, we used a set of 16-bit signed 
Approx. Adders from EvoApproxLibLITE, focusing on key metrics such as mean absolute error 
(MAE), error probability (EP), and hardware cost. We evaluated all the 16-bit signed adders 

from the library. 

Algorithm 2: CORDIC-based Multiplication of  𝒙 .𝒛 with Approx. Adder 

INPUT: values 𝑥, 𝑧; number of iterations 𝑛; number of bits for representation 𝑁. 

OUTPUT: approximate product  𝑦𝑠𝑐𝑎𝑙𝑒𝑑  ≈  𝑥 .𝑧. 

1 CALCULATE NORMALIZATION FACTOR: 𝑘 =  2𝑁−1  

2 INITIALIZE: 𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑧

2𝑘  
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3 INITIALIZE: 𝑦 =  0 

4 FOR 𝑖 =  0 TO 𝑛 −  1 DO: 

       𝑑 =  𝑠𝑖𝑔𝑛(𝑧𝑠𝑐𝑎𝑙𝑒𝑑); 

       𝑦 =  𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝐴𝑑𝑑(𝑦, 𝑑 . (𝑥 .2−1 )); 

       𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑧𝑠𝑐𝑎𝑙𝑒𝑑  −  𝑑 . 2−𝑖;  //with exact adder   

5 RESCALE: 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑦 .  2𝑘 

6 RETURN: 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 

2) The effect of the number of iterations to the accuracy: In regular CORDIC algorithms, 
more iterations usually mean better accuracy. But when we use Approx. Adders, this 

relationship becomes unclear. Each iteration should reduce the error, but approximate 
arithmetic adds its own errors that might change how this works. 

To better understand this, we look at how changing the number of CORDIC iterations 
affects accuracy when using different Approx. Adders. This helps us answer two questions: do 
traditional CORDIC accuracy improvements still work with approximate arithmetic, and is 

there a point where more iterations don't help or even make things worse. 

These results will help designers choose the right number of iterations for different Approx. 

Adders and applications. 

3. EVALUATION 

3.1. Evaluation Methodology 

1) Hardware Evaluation Methodology: The 8-bit CORDIC multiplier with Approx. Adder 
design was exhaustively tested using all possible input combinations (256 × 256 test cases). 

The 16-bit signed adders of EvoApproxLib [22] were evaluated and compared with the baseline 
CORDIC multiplier using the exact adder design. The average error rate was calculated for each 
design. 

The hardware modules were implemented in Verilog and synthesized using Design 
Compiler in a 45 nm process technology. Functional and netlist simulations were performed 

using Questasim. The estimated maximum operating frequency and power consumption were 
extracted using PrimeTime. 

2) Software Evaluation Methodology: Based on the hardware results, several designs with 
optimal area cost and power consumption were selected to evaluate their impact on basic 

software applications, specifically the Sobel filter and Gaussian filter. 

To investigate the effects of increasing iteration count on result accuracy, the CORDIC 

multiplier with Approx. Adder was tested on squared functions with varying numbers of 
iterations. For this experiment, a Python script was used to simulate the values of $x^2$ using 

the CORDIC multiplier with different adders, and the results were compared with exact values. 
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Testing was conducted for 256 test cases (for 8-bit CORDIC multiplier design), ranging from 

5 to 16 iterations. The average errors for all test cases were recorded. 

To assess the impact of using the CORDIC multiplier with Approx. Adder, experiments 
were conducted in Python on Gaussian filter and Sobel edge detection. Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) were used as key evaluat ion 

metrics.  

To enhance numerical precision in these image processing applications, fixed-point 

representations were adopted and tailored to each computational component. Pixel values were 
represented using the Q8.0 format, while the Gaussian kernel employed the Q0.8 format to 

accommodate its fractional characteristics. The Sobel kernel utilized the Q2.6 format, which 
provided an optimal balance between dynamic range and precision for effectively capturing 
spatial gradients. This configuration ensured adequate accuracy in intermediate computations, 

particularly when combined with approximate arithmetic units. 

3.2. Hardware Evaluation Results 

Table 1 shows the comparative results from each variant of the design. 

From Table 1, significant improvements in hardware area cost, power consumption, and 

maximum operating frequency were observed when Approx. Adders were applied in the 
CORDIC multiplier design. Compared to the baseline design with exact adders, area savings of 

up to 11.5% were achieved (for the 32T variant), and power consumption was reduced by up to 
19.3% (for the 2YM variant). Several variants demonstrated improved maximum operating 
frequencies, with the 2YM variant achieving the highest frequency of 562MHz (14.7% 

improvement over the exact design) and the 2UB variant reaching 535MHz (9.2% 
improvement). 

Table 1. Comparison of Multiplier CORDIC Multiplier Approx (CMA) with ITERATIONS = 
16, f = 100MHz. 

Design Area(µm²) Power(µW) Avg error(%) Fmax(MHz) 

Exact 617 114 0.24% 490 

2TN 615 112 0.39% 490 

2U6 593 108 0.44% 476 

2UB 555 99 1.88% 535 

2UY 606 111 0.09% 474 

2YM 562 92 3.76% 562 

32T 546 96 4.48% 513 

36D 556 98 1.62% 508 

Regarding accuracy trade-offs, the average error rate was slightly increased in the worst 

case 32T variant, up to 4.48%, though some variants demonstrated excellent accuracy 
preservation (e.g., 2UY variant with only 0.09% error rate). The 2TN and 2U6 variants provide 

a good balance between hardware efficiency and accuracy, with error rates below 0.5% while 
achieving notable power and area reductions. 

In conclusion, the experimental results demonstrated that incorporating Approx. Adders 

into the CORDIC multiplier design yielded favorable gains in area cost, power consumption, 
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and maximum operating frequency. The 2YM variant offers the best overall hardware 

efficiency, while the 2UY variant provides superior accuracy with moderate efficiency gains. 
Based on specific application requirements, suitable variants can be selected to optimize the 

design for either maximum performance or highest accuracy. 

Table 2 summarizes the comparison between the proposed CMA and previously reported 
CORDIC-based designs. As observed, the CMA achieves up to 39× smaller area (615 vs. 8578 

μm2 in Lyu et al. [4]) and 47× lower power (112 vs. 5240 μW), while also delivering explic it 
error control with 0.39% MRE compared to 6.03% MRE in Khurshid et al. [23]. In contrast, 

Lyu et al. [4] emphasize high operating frequency (6.25 GHz) at the cost of larger area and 
power, while Nair et al. [24] focus on FPGA implementations with significant resource usage 
(16,579 LUTs). Unlike these broader architectures, the proposed CMA is specialized for 

multiplication, making it a compact and energy-efficient solution particularly suited for low 
power and error-tolerant domains. 

Table 2. Comparison between the proposed CMA and previously proposed architectures. 

Design Area (µm²) Power (µW) Avg. error (%) Fmax (MHz) 

2TN (Proposed) 615 112 0.39 (MRE) 490 

Khurshid et al. [23]. 420 LUTs 3470 6.032 (MRE) 667.55 

Lyu et al. [4]. 8578 5240 – 6250 

Nair et al. [24]. 16,579 LUTs 82,000 – 8.26 

3.3. Software Evaluation Results 

 

Figure 2. CORDIC Squaring Average Error vs Iterations for Different Approx. Adders. 

This section presents the evaluation results from both squared functions and applications 

using Gaussian Filter and Sobel Edge Detection. Based on the hardware evaluation results, five 
variants of the Approx. Adder were evaluated: 2TN, 2U6, 2UB, 2UY, and 36D, each offering 
different trade-offs in terms of area, latency, and power consumption. One group offers better 

accuracy (2TN, 2U6, 2UY), one group have better area and power consumption rate but slightly 
worse accuracy (2UB, 36D) 
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1) Evaluation results for the squared functions: Fig. 2 shows the average error percentages 

for different variants of the CORDIC multiplier with varying numbers of iterations. The 
software simulation demonstrated similar error rates to the hardware results, with the higher 

accuracy group (2TN, 2UY, 2U6) clearly showing better performance than the other group 
(2UB, 36D). The iteration number exhibited a similar trend across all adders, where accuracy 
tended to saturate after 9-10 iterations. 

2) Evaluation results for the applications: Table 3 shows the PSNR and SSIM results for 
different CORDIC-based designs using five selected 16-bit Approx. Adders across iteration 

counts ranging from 5 to 10. Overall, the results demonstrate a consistent trend where increasing 
the number of iterations improves image quality across both Gaussian and Sobel filters. 

For Gaussian filtering, all designs achieve relatively high SSIM scores and PSNR values 
that increase sharply with more iterations. Notably, even at low iteration counts, the degradation 

is minimal, confirming that approximation errors introduced by both the CORDIC multip lier 
and the Approx. Adder exert limited impact on the output of this smoothing operation. Fig. 3 
and Fig. 4 illustrate the effects of applying CORDIC Multiplier with and without Approx. 

Adders for Gaussian filter and Sobel Detection tasks. 

In contrast, the Sobel filter exhibits greater sensitivity to approximation, especially at 5–6 

iterations. PSNR values at iteration 5 are around 9–19 dB, depending on the design, but improve 
significantly with higher iterations, reaching 44–49 dB at iteration 10 for most configurations. 

SSIM follows a similar pattern, rising from 0.42 to 0.98, highlighting the importance of 
numerical precision in edge detection tasks. 

Among the evaluated designs, the group with better accuracy (2TN, 2U6, 2UY) 
consistently outperforms the group optimized for area and power (2UB, 36D) in terms of image 

quality. However, the gap narrows as the number of iterations increases. All designs exhibit 
diminishing returns after iteration 9, suggesting that this is a reasonable saturation point for 
balancing performance and hardware complexity. 

 

Figure 3. Comparison of processing results for Gaussian Filter: original, software, CORDIC 
multiplier, and approximate CORDIC multiplier. 

 
Figure 4. Comparison of processing results for Sobel Filter: original, software, CORDIC multiplier, 

and approximate CORDIC multiplier.  
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Table 3. PSNR and SSIM Comparison for Selected Approx. Adders with Varying CORDIC Iterations. 

Design 
#Iter. Gaussian 

PSNR 
Gaussian 

SSIM 
Sobel 
PSNR 

Sobel 
SSIM 

CORDIC Multiplier 
5 29.98 0.997 19.45 0.4216 

6 45.02 0.9987 25.45 0.5849 

7 50.87 0.9985 31.66 0.7206 

8 53.91 0.9985 37.98 0.8339 

9 51.28 0.9984 44.22 0.9316 

10 56.15 0.999 49.73 0.9815 

CORDIC + Approx. Adder (2TN) 

 

5 30.03 0.9971 9.16 0.4197 

6 45.19 0.9987 25.74 0.58 

7 50.63 0.9985 31.53 0.7258 

8 53.35 0.9984 37.69 0.8292 

9 51.77 0.9984 43.33 0.9184 

10 57.17 0.9992 48.75 0.979 

CORDIC + Approx. Adder (2U6) 
5 29.98 0.997 9.16 0.42 

6 45.1 0.9987 25.74 0.5802 

7 50.68 0.9985 31.54 0.7258 

8 53.29 0.9984 37.68 0.8294 

9 51.91 0.9984 43.22 0.9179 

10 60.17 0.9995 48.44 0.9782 

CORDIC + Approx. Adder (2UY) 
5 29.98 0.997 9.16 0.4198 

6 45.1 0.9987 25.74 0.5801 

7 50.68 0.9985 31.52 0.7255 

8 53.29 0.9984 37.55 0.827 

9 51.91 0.9985 43.15 0.9157 

10 57.97 0.9993 48.46 0.978 

CORDIC + Approx. Adder (2UB) 
5 30.77 0.9971 9.15 0.4126 

6 48.97 0.9984 25.57 0.5682 

7 44.96 0.9983 30.7 0.7021 

8 46.78 0.9986 35.57 0.7928 

9 51.13 0.9985 40.54 0.8896 

10 51.56 0.9984 44.29 0.9616 

CORDIC + Approx. Adder (36D) 
5 30.68 0.9972 9.15 0.4143 

6 49.38 0.9988 25.57 0.5703 

7 44.74 0.9982 30.75 0.7052 

8 46.06 0.9984 35.63 0.7942 

9 50.82 0.9984 39.81 0.8698 

10 47.58 0.999 42.5 0.9169 
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4. CONCLUSION 

This paper proposes a low-power CORDIC multiplier using Approx. Adders to achieve 
energy-efficient computing. The design combines CORDIC iterations with approximate 

arithmetic, offering favorable trade-offs between accuracy and hardware efficiency. 
Hardware evaluation demonstrates different optimization targets with variants achieving 

up to 19.3% power reduction, 11.5% area savings, and 14.7% frequency improvement 

compared to conventional exact CORDIC multipliers.  
Software evaluation on Gaussian filtering and Sobel edge detection shows that the best-

performing configurations—specifically those using adders such as 2U6, 2UY, and 2TN with 
9–10 CORDIC iterations—achieve PSNR values exceeding 50 dB for Gaussian and 44 dB for 
Sobel, with SSIM values consistently above 0.998 and 0.97, respectively. 

The results demonstrate effectiveness for energy-constrained, error-tolerant applications, 
enabling designers to select appropriate configurations based on specific requirements. Future 

work will focus on adaptive approximation strategies and extending this approach to other 
CORDIC-based functions. 
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