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Abstract. In digital 1C design, low-power CORDIC-based multipliers have attracted
significant attention due to their potential to integrate approximate adders for reducing energy
and area costs. While CORDIC is hardware-efficient, its precise design still has room for
improvement, particularly in terms of power consumption and area overhead. To address this,
we present an approach to enhance the CORDIC multiplier using Approx. Adders from the
EvoApproxLib library. The proposed design offers multiple variants with different
optimization targets: up to 19.3% power reduction in CORDIC + Approx. Adder, 11.5% area
savings in CORDIC + Approx. Adder, and 14.7% frequency improvement in CORDIC +
Approx. Adder compared to the conventional exact CORDIC multiplier. When applied to
Gaussian filtering and Sobel edge detection, optimal variants such as CORDIC + Approx.
Adder and CORDIC + Approx. Adder yield PSNR values of 60 and 48 dB respectively, with
SSIM values exceeding 0.990, indicating minimal quality loss. The evaluation shows that 8—
10 iterations provide the best efficiency-accuracy trade-off, enabling designers to select
appropriate variants based on specific application requirements. These results demonstrate
the effectiveness of the proposed method for energy-constrained, error-tolerant systems in
loT devices, edge computing, and image processing applications.

Keywords: Approximate computing, CORDIC, low-power, multiplier, Gaussian filter, edge
detection.
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1. INTRODUCTION

Low-power design is essential in today’s electronics landscape, particularly for portable
gadgets like smartphones, wearables, 10T sensors, and medical implants, where constantly
recharging or swapping out batteries just is not feasible [1]. It helps cut down on energy costs
for both personal devices and larger systems, like data centers, while also reducing the need for
complicated cooling systems. By consuming less power, we not only generate less heat but also
boost system reliability and prolong the lifespan of the hardware. Moreover, it plays a vital role
in supporting environmental sustainability by lowering energy consumption and carbon
emissions. In the fiercely competitive market we have today, being energy-efficient is a
significant edge, making low-power design crucial for both technical performance and
commercial success [2].

The CORDIC (COordinate Rotation Dlgital Computer) algorithm is an efficient method
for implementing multiplicative functions in digital hardware [3]. By replacing multipliers with
shift-add operations, it significantly reduces both power and area costs, up to 76.69% in power
and 63.64% in area in various FPGAs [4]. These gains come from lower switching activity and
simpler arithmetic units. CORDIC supports linear, hyperbolic, and rotational modes, enabling
it to perform multiplication, division, square roots, and complex functions without multipliers.
Its efficiency and flexibility make CORDIC well suited for FFTs, DSPs, graphics, and
communication systems, especially in power-constrained environments [3].

Although CORDIC is hardware-efficient, its iterative nature leads to high latency and
energy consumption, and the need for more iterations and complex control for high precision
and limited convergence range makes it less suitable for modern, low-power, and precision-
critical applications like neural networks and edge devices [5]. Conventional CORDIC is
limited in neural network applications due to its fixed-iteration and sequential design. It applies
uniform high-precision computation to all activation functions, even when lower precision is
sufficient. This leads to unnecessary energy consumption and hardware overhead [6]. Its
sequential nature also conflicts with the parallel structure of modern neural accelerators,
especially in MAC units. As a result, additional synchronization is required, increasing power
and area costs [7]. CORDIC also lacks scalability and flexibility for large models like
transformers, which demand dynamic precision and adaptive computation. These limitations
reduce its suitability for modern Al systems [3].

Approximate computing reduces energy use and improves performance by allowing small
errors in computation [8]. Many Al and signal processing tasks, like image recognition and
neural networks, tolerate such errors due to their statistical or perceptual nature [9]. This enables
simpler hardware and lower power consumption. Approx. Adders and multipliers have shown
good energy savings with minimal loss in accuracy, especially in MAC operations [10]. Recent
work also links approximate computing to better noise resilience. These benefits make it well-
suited for low-power, error-tolerant applications [11], [12].

There is a clear gap in research on applying Approx. Adders within CORDIC for
multiplication. While CORDIC and approximate arithmetic have been studied independently,
their integration remains largely unexplored. This represents a missed opportunity to enhance
energy efficiency and noise tolerance in low-power systems such as 10T and edge devices [13].
CORDIC’s shift-add structure and inherent error resilience make it a good candidate for
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approximate computing. Incorporating Approx. Adders could enable more efficient and power-
aware designs for Al and signal processing applications [14].

The main contributions of this paper are as follows:

e A novel CORDIC-based multiplier architecture that integrates Approx. Adders to
improve power and area efficiency.

e A comprehensive evaluation of the trade-offs between computational accuracy and
hardware efficiency (power, area, and delay).

The organization of the paper is as follows: Section 2 shows our proposed design. Then,
section 3 presents the evaluation results and section 4 concludes the paper.

2. PROPOSED FRAMEWORK

2.1. CORDIC Algorithm Overview

The COordinate Rotation Dlgital Computer (CORDIC) algorithm is a shift-add method
that enables efficient hardware implementation of mathematical functions without multipliers
[3]. CORDIC computes vector rotations through iterative micro-rotations using only addition,
subtraction, bit-shifting, and table lookups, significantly reducing hardware complexity and
power consumption [15].

CORDIC operates in rotation mode (computing sine, cosine, complex multiplication) and
vectoring mode (computing magnitude and phase). It supports three coordinate systems:
circular  (trigonometric  functions), linear  (multiplication/division), and hyperbolic
(exponentials/logarithms), each sharing a unified iterative structure [16].

2.2. Approximate Computing Fundamentals

Approximate computing is a design paradigm that intentionally introduces controlled
inaccuracies into computations to reduce energy consumption, delay, and hardware complexity.
This approach is particularly effective in applications that exhibit inherent error resilience, such
as image processing and neural networks, where perfect accuracy is not always required.

Approx. Adders are key components in approximate arithmetic units. They are broadly
categorized as follows [17]:

1) Speculative adders: These designs predict carry signals over a truncated bit-slice to
reduce carry propagation delay. Examples include the Almost Correct Adder (ACA) and Error-
Tolerant Adder (ETA) families [18].

2) Segmented adders: The adder is divided into accurate and approximate segments, with
the carry chain truncated between them. This segmentation shortens the critical path while
maintaining partial accuracy [19].

3) Carry-select Approx. Adders: These compute partial sums under both possible carry-in
conditions and select the result using a predicted carry signal. The Speculative Carry-Select
Adder (SCSA) is a well-known example [20].

4) Approximate full-adder based designs: These modify sum or carry logic in the least
significant bits. Examples include the Lower-part OR Adder [19] and Heterogeneous Block-
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based Approx. Adders (HBAA) [21], which use varied sub-adder configurations to achieve
Pareto-optimal trade-offs between accuracy and efficiency.

2.3. CORDIC Multiplier Architecture

Our CORDIC multiplier architecture is shown in Fig. 1 and Algorithm 1. We use a basic
sequential architecture to update y and z_{scaled} through multiple iterations, where the
updated values are determined by the current iteration number and the sign of z_{scaled}.
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Figure 1. CORDIC Multiplier Architecture.
Algorithm 1: CORDIC-based Multiplication of x.z

INPUT: values x, z; number of iterations n; number of bits for representation N.

OUTPUT: approximate product y..,j.qa = X .Z.
1 CALCULATE NORMALIZATION FACTOR: k = 2N
2 INITIALIZE: z -

scaled — 2k

3 INITIALIZE: y = 0
4 FORi = 0TOn — 1DO:
d = sign(Zsaieq)
y=y+d.(x.271)
—d.2™"

VA VA

scaled = Zscaled

5 RESCALE: y 00 = ¥. 2%
6 RETURN: ¥..010a
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To help illustrate the algorithm, consider a simple example where x

number of iterations isn = 3.
Initialization:
e k =4 (normalization factor)
2=075
4
e y = 0 (accumulator)
Iteration 1 (i = 0):
e d = sign(0.75) = +1

e y=0+1-(5-20=0+5
® Zoaiea= 075 —1-20 = 0.75 —
Iteration 2 (i = 1):

e d = sign(—0.25) = -1
e y=5+(-1)-(5:-2-1)=5-25=25

* Zscaled =

=5
1 = -0.25

® Zeatea=—025—-(-1)-2-1=-025+ 05=0.25

Iteration 3 (i = 2):

e d = sign(0.25) = +1

e y=254+1-(5-2-2) =25+ 125 = 3.75
® Zigeq=025—1-2-2=025-025=0
Final Result:

e Rescale:y . .qieqa = 375 X 4=15
e Expected result:5 X 3 = 15

5,z

3, and the

This example demonstrates how the algorithm approximates multiplication using only shift

and add operations.
2.4. Approx. Adder Integration

1) Cordic Multiplier with Approx. Adder: In this paper, we proposed using an Approx.
Adder to calculate the update of y in each iteration. Algorithm 2 shows the proposed multiplier.

Since the signed adders for the updates of y are restricted to 16-bit adders only, we
restricted the multiplier to use an 8-bit input. In this study, we used a set of 16-bit signed
Approx. Adders from EvoApproxLibLITE, focusing on key metrics such as mean absolute error
(MAE), error probability (EP), and hardware cost. We evaluated all the 16-bit signed adders

from the library.

Algorithm 2: CORDIC-based Multiplication of x .z with Approx. Adder

INPUT: values x, z; number of iterations n; number of bits for representation N.

OUTPUT: approximate product y..,j.q = X .Z.
1 CALCULATE NORMALIZATION FACTOR: k = 2N™1

2 INITIALIZE: z Z

scaled — 2k
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3 INITIALIZE: y = 0
4 FORi = 0TOn — 1DO0O:

d= Sign(zscaled);

y = ApproximateAdd(y,d .(x.271));

z z — d.27% //with exact adder

scaled = Zscaled

5 RESCALE: V0= ¥ . 2"
6 RETURN: V.00

2) The effect of the number of iterations to the accuracy: In regular CORDIC algorithms,
more iterations usually mean better accuracy. But when we use Approx. Adders, this
relationship becomes unclear. Each iteration should reduce the error, but approximate
arithmetic adds its own errors that might change how this works.

To better understand this, we look at how changing the number of CORDIC iterations
affects accuracy when using different Approx. Adders. This helps us answer two questions: do
traditional CORDIC accuracy improvements still work with approximate arithmetic, and is
there a point where more iterations don't help or even make things worse.

These results will help designers choose the right number of iterations for different Approx.
Adders and applications.

3. EVALUATION

3.1. Evaluation Methodology

1) Hardware Evaluation Methodology: The 8-bit CORDIC multiplier with Approx. Adder
design was exhaustively tested using all possible input combinations (256 x 256 test cases).
The 16-bit signed adders of EvoApproxLib [22] were evaluated and compared with the baseline
CORDIC multiplier using the exact adder design. The average error rate was calculated for each
design.

The hardware modules were implemented in Verilog and synthesized using Design
Compiler in a 45 nm process technology. Functional and netlist simulations were performed
using Questasim. The estimated maximum operating frequency and power consumption were
extracted using PrimeTime.

2) Software Evaluation Methodology: Based on the hardware results, several designs with
optimal area cost and power consumption were selected to evaluate their impact on basic
software applications, specifically the Sobel filter and Gaussian filter.

To investigate the effects of increasing iteration count on result accuracy, the CORDIC
multiplier with Approx. Adder was tested on squared functions with varying numbers of
iterations. For this experiment, a Python script was used to simulate the values of $x"2$ using
the CORDIC multiplier with different adders, and the results were compared with exact values.
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Testing was conducted for 256 test cases (for 8-bit CORDIC multiplier design), ranging from
5 to 16 iterations. The average errors for all test cases were recorded.

To assess the impact of using the CORDIC multiplier with Approx. Adder, experiments
were conducted in Python on Gaussian filter and Sobel edge detection. Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) were used as key evaluation
metrics.

To enhance numerical precision in these image processing applications, fixed-point
representations were adopted and tailored to each computational component. Pixel values were
represented using the Q8.0 format, while the Gaussian kernel employed the Q0.8 format to
accommodate its fractional characteristics. The Sobel kernel utilized the Q2.6 format, which
provided an optimal balance between dynamic range and precision for effectively capturing
spatial gradients. This configuration ensured adequate accuracy in intermediate computations,
particularly when combined with approximate arithmetic units.

3.2. Hardware Evaluation Results
Table 1 shows the comparative results from each variant of the design.

From Table 1, significant improvements in hardware area cost, power consumption, and
maximum operating frequency were observed when Approx. Adders were applied in the
CORDIC multiplier design. Compared to the baseline design with exact adders, area savings of
up to 11.5% were achieved (for the 32T variant), and power consumption was reduced by up to
19.3% (for the 2YM variant). Several variants demonstrated improved maximum operating
frequencies, with the 2YM variant achieving the highest frequency of 562MHz (14.7%
improvement over the exact design) and the 2UB variant reaching 535MHz (9.2%
improve ment).

Table 1. Comparison of Multiplier CORDIC Multiplier Approx (CMA) with ITERATIONS =

16, f = 100MHz.

Design Area(u?) Power(pUW) Avg error(%) Frex(MHZ)
Exact 617 114 0.24% 490
2TN 615 112 0.39% 490
2U6 593 108 0.44% 476
2UB 555 99 1.88% 535
2UY 606 111 0.09% 474
2YM 562 92 3.76% 562
32T 546 96 4.48% 513
36D 556 98 1.62% 508

Regarding accuracy trade-offs, the average error rate was slightly increased in the worst
case 32T variant, up to 4.48%, though some variants demonstrated excellent accuracy
preservation (e.g., 2UY variant with only 0.09% error rate). The 2TN and 2U6 variants provide
a good balance between hardware efficiency and accuracy, with error rates below 0.5% while
achieving notable power and area reductions.

In conclusion, the experimental results demonstrated that incorporating Approx. Adders
into the CORDIC multiplier design yielded favorable gains in area cost, power consumption,
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and maximum operating frequency. The 2YM variant offers the best owverall hardware
efficiency, while the 2UY variant provides superior accuracy with moderate efficiency gains.
Based on specific application requirements, suitable variants can be selected to optimize the
design for either maximum performance or highest accuracy.

Table 2 summarizes the comparison between the proposed CMA and previously reported
CORDIC-based designs. As observed, the CMA achieves up to 39x smaller area (615 vs. 8578
um2 in Lyu et al. [4]) and 47% lower power (112 vs. 5240 uW), while also delivering explicit
error control with 0.39% MRE compared to 6.03% MRE in Khurshid et al. [23]. In contrast,
Lyu et al. [4] emphasize high operating frequency (6.25 GHz) at the cost of larger area and
power, while Nair et al. [24] focus on FPGA implementations with significant resource usage
(16,579 LUTs). Unlike these broader architectures, the proposed CMA is specialized for

multiplication, making it a compact and energy-efficient solution particularly suited for low
power and error-tolerant domains.

Table 2. Comparison between the proposed CMA and previously proposed architectures.

Design Area (Um?) Power (LW) Avg. error (%) Fmax (MHz)
2TN (Proposed) 615 112 0.39 (MRE) 490
Khurshid et al. [23]. 420 LUTSs 3470 6.032 (MRE) 667.55
Lyu et al. [4]. 8578 5240 - 6250
Nair et al. [24]. 16,579 LUTs 82,000 - 8.26

3.3. Software Evaluation Results
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Figure 2. CORDIC Squaring Average Error vs Iterations for Different Approx. Adders.

This section presents the evaluation results from both squared functions and applications
using Gaussian Filter and Sobel Edge Detection. Based on the hardware evaluation results, five
variants of the Approx. Adder were evaluated: 2TN, 2U6, 2UB, 2UY, and 36D, each offering
different trade-offs in terms of area, latency, and power consumption. One group offers better

accuracy (2TN, 2U6, 2UY), one group have better area and power consumption rate but slightly
worse accuracy (2UB, 36D)
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1) Evaluation results for the squared functions: Fig. 2 shows the average error percentages
for different variants of the CORDIC multiplier with varying numbers of iterations. The
software simulation demonstrated similar error rates to the hardware results, with the higher
accuracy group (2TN, 2UY, 2U6) clearly showing better performance than the other group
(2UB, 36D). The iteration number exhibited a similar trend across all adders, where accuracy
tended to saturate after 9-10 iterations.

2) Evaluation results for the applications: Table 3 shows the PSNR and SSIM results for
different CORDIC-based designs using five selected 16-bit Approx. Adders across iteration
counts ranging from 5to 10. Overall, the results demonstrate a consistent trend where increasing
the number of iterations improves image quality across both Gaussian and Sobel filters.

For Gaussian filtering, all designs achieve relatively high SSIM scores and PSNR values
that increase sharply with more iterations. Notably, even at low iteration counts, the degradation
is minimal, confirming that approximation errors introduced by both the CORDIC multip lier
and the Approx. Adder exert limited impact on the output of this smoothing operation. Fig. 3
and Fig. 4 illustrate the effects of applying CORDIC Multiplier with and without Approx.
Adders for Gaussian filter and Sobel Detection tasks.

In contrast, the Sobel filter exhibits greater sensitivity to approximation, especially at 5-6
iterations. PSNR values at iteration 5 are around 9-19 dB, depending on the design, but improve
significantly with higher iterations, reaching 44-49 dB at iteration 10 for most configurations.
SSIM follows a similar pattern, rising from 0.42 to 0.98, highlighting the importance of
numerical precision in edge detection tasks.

Among the evaluated designs, the group with better accuracy (2TN, 2U6, 2UY)
consistently outperforms the group optimized for area and power (2UB, 36D) in terms of image
quality. However, the gap narrows as the number of iterations increases. All designs exhibit
diminishing returns after iteration 9, suggesting that this is a reasonable saturation point for

balancing performance and hardware complexity.
(a) Original (b) Software (c) CORDIC (d) CORDIC + Approx. Adder

Figure 3. Comparison of processing results for Gaussian Filter: original, software, CORDIC
multiplier, and approximate CORDIC multiplier.

(a) Original (b) Software (c) CORDIC (d) CORDIC + Approx. Adder

Figure 4. Comparison of processing results for Sobel Filter: original, software, CORDIC multiplier,
and approximate CORDIC multiplier.
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Table 3. PSNR and SSIM Comparison for Selected Approx. Adders with VVarying CORDIC Iterations.

#lter. Gaussian  Gaussian  Sobel Sobel

Design PSNR  SSIM  PSNR  SSIM

CORDIC Multilir 5 2008 0097 1945  0.4216

5 2507 00987 545 05849

7 5087 00965  3L66  0.7206

8 5301 00985 3708 08330

9 5128 00984 4422  0.9316

10 5615 0099 4973 09815

CORDIC + Approx. Adder (ZTN) 5 3003 09971 916 04197
6 2510 00087 2574 058

7 5063 00985 3153 07258

8 5335 00984 3760 08202

9 5177 00984 4333 00184

10 5717 00992 4875  0.979

CORDIC + Approx. Adder (2U6) > 2998 0997 916 042
6 451 09987 2574 05802

7 5068 00985 3154 07258

8 5329 00984 3768 08204

9 5101 00984 4322 009179

10 6017 00995 4844 09782

CORDIC + Approx, Adder (2UY) 5 2008 0997 016 0419
6 251 00987 2574 05801

7 5068 00985 3152  0.7255

8 5329 00984 3755  0.827

9 5101 00985 4315 00157

10 5707 00093 4846 0978

CORDIC + Approx. Adder (2UE) 5 077 00971 915 0415
5 4897 00984 2557  0.5682

7 4406 09983 307  0.7021

8 46,78 00086 3557 0.7928

9 5113 00985 4054  0.889

10 5156 00084 4429  0.9616

CORDIC + Approx. Adder (360) 5 3068 00972 915 04143
5 2935 00988 557 05703

7 47500982 3075 0.7052

5 2606 00084 3563 07942

9 5082 00984 3981  0.8698

10 47.58 0.999 42.5 0.9169
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4. CONCLUSION

This paper proposes a low-power CORDIC multiplier using Approx. Adders to achieve
energy-efficient computing. The design combines CORDIC iterations with approximate
arithmetic, offering favorable trade-offs between accuracy and hardware efficiency.

Hardware evaluation demonstrates different optimization targets with variants achieving
up to 19.3% power reduction, 11.5% area savings, and 14.7% frequency improve ment
compared to conventional exact CORDIC multipliers.

Software evaluation on Gaussian filtering and Sobel edge detection shows that the best-
performing configurations—specifically those using adders such as 2U6, 2UY, and 2TN with
9-10 CORDIC iterations—achieve PSNR values exceeding 50 dB for Gaussian and 44 dB for
Sobel, with SSIM values consistently above 0.998 and 0.97, respectively.

The results demonstrate effectiveness for energy-constrained, error-tolerant applications,
enabling designers to select appropriate configurations based on specific requirements. Future
work will focus on adaptive approximation strategies and extending this approach to other
CORDIC-based functions.
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