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Abstract. Beams made from variable mechanical properties materials are increasingly used in 

the fields of construction and transportation. The article presents a study on the static bending 

response of functionally graded composite beams resting on a two-parameter elastic 

foundation based on an exact solution. The material of the plate varies exponentially with the 

thickness variation. The calculations are formulated based on Timoshenko's first-order shear 

deformation theory, and the equilibrium equations of the beam are derived using the principle 

of virtual work. An analytical method is employed to derive expressions for displacement and 

rotation at any point along the beam. The reliability of the study is validated by comparison 

with previously published solutions. Furthermore, this study also investigates the effects of 

material, geometric, and elastic foundation parameters on the displacement and rotation 

responses of the composite beam. This research serves as a significant foundation for 

engineers in designing and manufacturing practical structures. 
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1. INTRODUCTION  

Nowadays, to enable structures to withstand complex types of loads (shockwave loads, 

temperature variations, and so on), scientists have developed new materials with superior 

advantages in terms of load-bearing capacity. Examples include high-strength composite 

materials, graphene-reinforced composites, and composites made by blending ceramics and 

metals (functionally graded materials, FGMs). These materials can be used to manufacture 

bomb-resistant bunker doors, partitions for nuclear reactors, and more. 

To assist engineers in designing products with the highest operational efficiency, 

extensive research is required across various aspects. Among these, the study of the 

mechanical responses of beams, plates, and shells made of functionally graded composite 

materials is an urgent requirement. Reddy [1] presented the static bending displacement and 

its variation over time under dynamic loads for functionally graded composite plates, based 

on both numerical simulations and exact solutions. Ninh [2] employed various beam theories 

to address the free vibration problem of multilayer beams with bi-directional functionally 

graded properties resting partially on an elastic foundation. Duc et al [3] utilized the finite 

element method to analyze the static buckling response of plates made of flexoeletric 

material. Lan et al [4] applied a novel approach to determine the stability responses of 

multilayered composite beams based on a new shear deformation theory. Nam et al. [5] 

analyzed the free and forced vibrations of shells with with Shear Connectors. Using Laplace 

transformations, Tho et al [6] clarified the relationship between tuned mass damper and 

beams and space frame systems. Yu et al [7] examined the stability of functionally graded 

composite plates with cracks under a thermal environment. Furthermore, the vibrational and 

stability responses of functionally graded composite beams have been investigated using 

analytical and Ritz methods in studies [8]-[9]. 

It is clear from previous research that finding out the displacement and rotation angles of 

functionally graded composite beams resting on a two-parameter elastic foundation is still an 

interesting topic that needs a lot more research, especially analytical methods. This is also the 

main purpose of this paper and the problem it aims to address. 

2. CALCULATION FORMULAS 

The beam subjected to a uniformly distributed load PL has a calculation model as shown 

in Figure 1. The beam has a length of L and the height of the cross-section is h. 
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Figure 1. Model of a beam subjected to a uniformly distributed load resting on a two-

parameter elastic foundation. 
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The composite beam is fabricated by blending ceramic and metal, where the volume 

fraction of ceramic is Vc, and the volume fraction of metal is Vm, These two components are 

related as shown in [1], [7]: 

1
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c m c

z
V V V

h

 
= + = − 
 

                                               (1) 

Where the parameter n is referred to as the material volume exponent, the subscript m 

represents metal, and the subscript c represents ceramic. 

The modulus of elasticity and Poisson’s ratio vary along the thickness of the beam 

according to the following functions [1], [7]: 
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Using Timoshenko's first-order shear deformation theory, the displacement field at any 

point on the beam with coordinates (x, z) is expressed as: 

( ) ( )

( ) ( )
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Where u0(x,0), w0(x,0) are the axial and transverse displacements at the mid-surface of 

the beam, respectively u and w are the axial and transverse displacements along the Ox và Oz 

axes, respectively, and x  represents the rotation of the beam’s cross-section. 

The components of axial strain and shear strain in the beam are given as follows: 
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The specific expressions for the strain components in the beam are as follows: 
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The components of normal stress and shear stress at any point can be calculated using 

Hooke’s law as follows: 
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The virtual work of internal forces of the beam during deformation is expressed as: 
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where b is the width of the beam (Figure 1). The virtual work done by the foundation on 

the beam can be expressed as: 

L
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where kw and kₛ are the stiffness parameters of the foundation. The virtual work of 

external forces acting on the beam is expressed as: 

L 0

L

W b P w dx =   (9) 

where PL is the external force applied to the beam. 

For the beam to be in equilibrium, the total virtual work of internal forces and external 

forces must be equal: 

nU U W  + =  (10) 

 Substituting the expressions for virtual work (7)–(9) into (10), and then grouping the 

terms based on the independent operators 0u , x  and 0w , we obtain the following system 

of three equilibrium equations for each variable: 
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Define the coefficients as follows: 
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The equations are simplified as follows: 
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we obtain two equations with two unknowns: 
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For the case of a simply supported beam at both ends (The displacements and bending 

moments at both ends of the beam are set to zero), the analytical solution has the form: 
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Substituting (20) into (18)-(19), we obtain: 
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From (21), the following can be derived: 
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Substituting (23) into (22), the resulting equation is: 
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Finally, the expression for the displacement w0 takes the form: 

0
0

m 1

w s
2

P m x
w sin

m L
m

D
m mL

D k k
L LB m

D C
A L






 





=


 



 
 
 
 
 
     

=    
        
      − + −             − −            

  (25) 



Transport and Communications Science Journal, Vol. 76, Issue 07 (09/2025), 928-938 

934 

From expression (24), the amplitude B  can be easily determined using formula (23). 

Consequently, the rotation angle  x  can be calculated using formula (20). 

3. VERIFICATION EXAMPLE 

The first example compares the maximum deflection of a homogeneous beam with a 

length L = 10 m, thickness h (L/h=10 and 20), and cross-sectional width b, he material 

properties are E = 30 MPa, and Poisson’s ratio   = 0.3. The beam is subjected to a uniformly 

distributed load with an intensity q0 =  1 N/m, the maximum deflection is calculated using the 

dimensionless formula: 
*

0 4

0

100max max

EI
w w

q L
= . The maximum deflection at the mid-span of the 

beam is calculated and compared with results from previously published studies, as shown in 

Table 1. It can be easily observed that the results from this paper closely align with the 

published data, demonstrating the reliability of the proposed calculation theory. In Table 1, 

GT1 and GT2 denote the exact solutions based on classical beam theory and first-order beam 

theory, respectively, while FEM represents the solution obtained using the finite element 

method. 

Table 1. Comparison of Maximum Deflection for a Simply Supported Beam under 

Uniformly Distributed Load. 

L/h GT1 [10] GT1 [11] GT2 [10] GT2 [11] FEM [12] Bài báo 

10 1.313 1.302 1.348 1.334 1.334 1.340 

20 1.313 1.302 1.321 1.310 1.309 1.315 

100 1.131 - 1.313 - - 1.307 

Table 2. Comparison of Maximum Deflection 0max4

0

*
EI

w w
q L

=  of a Simply Supported Beam. 

Foundation parameters L/h=120 

wT  sT  CP [13] CX [13] CX [14] Bài báo 

0 

0 1.302  1.302  1.303  1.306 

10 0.644  0.644   0.645  0.649 

25 0.366  0.366  0.367  0.370 

10 

0 1.180  1.180  1.181  1.185 

10 0.613  0.613  0.614  0.617 

25 0.355  0.355  0.356  0.359 

100 

0 0.640  0.640  0.640  0.644 

10 0.425  0.425  0.426  0.430 

25 0.282  0.282  0.283  0.286 

Next, the paper compares the deflection of a beam resting on a two-parameter elastic 

foundation. The beam has a length L, a cross-sectional width b and a height h, it is subjected 

to a uniformly distributed load of intensity P0, and the elastic foundation is characterized by 
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parameters 

4 2

,  w s
w s

k L k L
T T

EI EI
= = , the moment of inertia is given as I = bh3/12. The 

comparison results are presented in Table 2, where reference [9] uses the collocation method 

(CP) and exact solution (CX), and reference [10] uses the exact solution. 

4. NUMERICAL INVESTIGATION RESULTS 

 This section presents the results of the bending deflection calculations for a 

functionally graded composite beam made of ceramic and metal. The material parameters are 

as follows: Ec = 380 GPa, Em = 70 GPa, 0.3c m = = , The beam has a length L, and its 

height h is variable. he two elastic foundation parameters Cw and Cs are calculated using the 

following formulas:

4 2

3 3

0 0

12 12
,w s

w s

k L k L
C C

Eh Eh
= = . The beam is subjected to a uniformly 

distributed load with an intensity P0, he displacement and rotation of the beam are calculated 

using the following dimensionless formulas: ( ) ( )
3

0
04

0

100

12

cE h
CV x w x

P L
= , 

( ) ( )
4

0

4

0

100

12

cE h
GX x x

P L
= , where h0 = L/20. 

- The effect of the volume exponen n: 

By varying the volume exponent n incrementally from 0 to 10, the calculated results for 

the beam's displacement and rotation are shown in Figure 2. 

It is observed that as the volume exponent n increases, both the displacement and rotation 

of the beam also increase. This is because a larger volume exponent n corresponds to a higher 

proportion of metal in the beam, making the beam softer, and consequently, the displacement 

increases. 

The displacement w reaches its maximum value at the mid-span of the beam, while the 

rotation angle achieves its minimum value at the two ends of the beam. 

  
a. Maximum Displacement and Rotation b. Displacement and Rotation Along the 

Entire Length of the Beam at n =10 

Figure 2. Displacement and Rotation of the Beam as a Function of the Volume Exponent n, 

L/h=20, Cw=50, Cs=5. 
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Effect of Beam Thickness: 

By varying the beam thickness h such that the ratio L/h increases from 10 to 50, the 

calculated results for the beam's displacement and rotation are presented in Figure 3. From 

this figure, it is observed that as the L/h ratio increases (the beam becomes thinner), the beam 

becomes more flexible, leading to increased displacement and rotation. The impact of 

thickness variation on the displacement w is more significant compared to its effect on the 

rotation. 

  

a. Maximum Displacement and Rotation b. Displacement and rotation along the entire 

length of the beam at L/h =50 

Figure 3. Displacement and Rotation of the Beam as a Function of the L/h, n=2, Cw=50, Cs=5. 

Effect of Elastic Foundation Stiffness: 

By varying the stiffness of the elastic foundation such that the coefficients Cw  and Cs 

change from 10 to 50, the calculated results for the beam's displacement and rotation are 

presented in Figures 4 and 5. These results indicate that as the stiffness of the elastic 

foundation increases, the structure becomes stiffer, leading to reduced displacement and 

rotation of the beam. 

The influence of the stiffness parameter Cw on the displacement and rotation is less 

significant compared to the effect of Cs . This suggests that the displacement and rotation of 

the beam are more sensitive to the parameter Cs than to Cw. 

  
a. Maximum Displacement and Rotation b. Displacement and rotation along the 

entire length of the beam at Cw =50 

Figure 4. Displacement and Rotation of the Beam as a Function of the Coefficient Cw, L/h 

=20, n=2, Cs=5. 



Transport and Communications Science Journal, Vol. 76, Issue 07 (09/2025), 928-938 

937 

 

  

a. Maximum Displacement and Rotation b. Displacement and rotation along the entire 

length of the beam at Cs =50 

Figure 5. Displacement and Rotation of the Beam as a Function of the Coefficient Cs, L/h 

=20, n=2, Cw=10. 

5. CONCLUSION 

 Using the analytical method, the paper analyzed the displacement and rotation responses 

of functionally graded composite beams resting on an elastic foundation. Based on the 

calculated results, the paper draws the following key conclusions: 

- The solution developed in this paper is reliable for solving the static bending problem of 

functionally graded composite beams. 

- As the volume exponent n increases, the proportion of metal in the material also 

increases, leading to higher displacement and rotation of the beam. 

- Smaller beam thickness and lower stiffness parameters of the elastic foundation result in 

greater displacement and rotation of the beam. 

- The rotation of the composite beam reaches its maximum value at the two ends of the 

beam, whereas the displacement w reaches its maximum at the mid-span. 

This is a novel study that opens up several potential research directions, such as dynamic 

analysis, random vibration, and optimization of geometry and material properties,….This 

study serves as a valuable reference for engineers in the design and fabrication of beams made 

from composite materials in practical applications.  
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