
Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

489 

 

 

Transport and Communications Science Journal 

 

CRACK DETECTION ON CONCRETE SURFACES USING THE 

YOLOv8 QUANTIZATION MODEL  

Ngo Thanh Binh1*, Ngo Van Minh1, Vu Ngoc Linh1, Pham Tuan Dung2 

1University of Transport and Communications, No. 3 Cau Giay Street, Hanoi, Vietnam 

2School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, United 

Kingdom 

ARTICLE INFO 

TYPE: Research Article 

Received: 19/03/2025 

Revised: 24/04/2025 

Accepted: 10/05/2025 

Published online: 15/05/2025 

https://doi.org/10.47869/tcsj.76.4.4  
* Corresponding author 

Email: ngobinh74@utc.edu.vn; Tel: 0947699777 

Abstract. The condition of concrete structures’ surfaces, most importantly the condition of 

cracks on the surface and their development over time, is an important and common criterion 

used to diagnose health conditions and determine their service life. Rapid collection, 

identification, and monitoring of concrete structures’ surfaces to assess the condition of 

bridge structures requires a fast-acting system that can meet the actual speed of the inspection 

process. This article introduces a YOLOv8 quantization model for rapid crack detection in 

concrete structures, leveraging GPU acceleration suitable for real-time video analysis during 

bridge inspections. The method incorporates histogram equalization and image enhancement 

to mitigate lighting issues and improve crack visibility. INT8 quantization reduces model 

size and accelerates processing while maintaining accuracy through dataset calibration. 

Converted to TensorRT and integrated into the inference pipeline for optimized GPU and 

memory management, the YOLOv8 quantization model achieves at least 30 FPS using full 

HD video footage. Field tests with NVIDIA GPUs demonstrated a 5x reduction in processing 

time, a 5x FPS increase, and a 6x improvement in GPU utilization, all while maintaining 

similar RAM usage. The quantum YOLOv8 model is optimized for NVIDIA GPUs, 

achieving a balance between accuracy and processing speed, allowing workers to analyze 

full HD videos in real-time at a rate of at least 30 FPS during field inspections.  

 

Keywords: Quantization, YOLOv8, Image-processing, Crack detection, Concrete structures. 

@ 2025 University of Transport and Communications  

https://doi.org/10.47869/tcsj.76.4.4
mailto:ngobinh74@utc.edu.vn


Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

490 

1. INTRODUCTION  

Reinforced concrete (RC) and prestressed concrete (PSC) bridges account for a large 

proportion of the total number of bridge works in Vietnam due to low construction costs, simple 

and easy-to-master construction technology, and suitability for many complex terrains in 

Vietnam. Damages appearing on the surface of concrete structures are cracks, peeling, pitting, 

etc. Cracks are the most frequent damage and have a great and direct impact on the overall load-

bearing capacity of road and bridge structures [1, 2]. Cracks on the surface of traffic works are 

very dangerous for the structure of the bridge [3]. Every year, bridge management and 

maintenance agencies must invest a large amount of resources, including time, money, and 

human resources, in surveying cracks and damage in general on existing bridge structures [4]. 

The survey results help the management unit to make a preliminary assessment of the extent of 

damage and predict the development of damage and the cause of its occurrence. Therefore, to 

minimize the cost and time for surveying and evaluating cracks on the surface of concrete 

structures, one of the current optimal solutions is to use modern techniques to conduct the 

survey and identify cracks automatically. 

Rapid advances in computer vision and Artificial Intelligence (AI), especially machine 

learning and deep learning, have enabled automated surveys of box girder bridges or concrete 

surfaces using devices such as digital cameras and AI-enabled smartphones. Along with the 

development of structural assessment tools based on damage databases, especially for cracks, a 

key challenge remains that current crack detection models have difficulty processing high-

resolution images and videos in real-time. This paper proposes the use of a quantum YOLOv8 

model optimized for NVIDIA GPUs to achieve a balance between accuracy and processing 

speed, allowing workers to analyze full HD videos in real-time at a rate of at least 30 FPS during 

field inspections  

2. RELATED WORKS 

Machine learning, deep learning, and digital image processing are widely used for concrete 

crack recognition and detection. A key challenge in applying digital image processing is the 

presence of noise, which obscures cracked pixels. Early approaches addressed this via digital 

image processing techniques [1–9]. For example, Zou et al. [1] used the CrackTree method to 

reduce image blur and enhance crack visibility. Nishikawa et al. [5] used multiple sequential 

image filtering. Salman et al. [6] employed Gabor filters to mitigate the impact of uneven 

surface texture. Gabor filters are effective for crack detection on rough surfaces due to their 

ability to analyze texture and identify features with consistent frequency and orientation. Fujita 

and Hamatomo [7] developed a crack model that incorporates noise removal by applying a 

median filter for preprocessing, followed by a Hessian matrix filter to highlight cracks. 

Adaptive thresholding was then used to improve crack detection accuracy.  

Although digital image processing techniques are easy to apply at low cost, they still have 

many disadvantages and often fail to achieve the desired accuracy [8]. Machine learning and 

deep learning are used as the basis for automatic crack pattern recognition with high accuracy. 

Some computational algorithms, such as Support Vector Machine (SVM), Decision Tree, 

Random Forest, and K-means Clustering, are used to detect and classify [9,10] and determine 

the location of cracks in the image [11,12]. Then, image processing techniques are applied to 

optimize the ability to recognize cracks. Although the accuracy has been improved, they still 

depend on the parameters chosen initially. Artificial Neural Networks (ANN) update important 

automatic ways to solve the existence of computational algorithms, from which many structured 



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

491 

ANNs are used for crack detection. Convolutional Neural Network (CNN) has emerged and is 

widely used in crack recognition tools. Ni et al. have automated the task of crack recognition 

(detection) and segmentation by merging features (feature maps) and classifying pixels [13]. 

From there, a CNN architecture named GoogleNet CNN is used for crack recognition. To 

segment cracks, the authors use the FPN (Feature Pyramid Network) structure, which contains 

merging layers and successive tick layers for crack segmentation.  

The CNN-based CrackNet model was introduced by Zhang et al. [14] to detect cracks on 

the surface of the pavement. Unlike the traditional CNN model, CrackNet eliminated the 

pooling layers, which helps the model achieve pixel-level accuracy while the length and width 

of the image remain unchanged through all layers. Yang et al. [15] also used a variant of CNN, 

named a fully convolutional network (FCN), to segment cracks at the pixel level. Compared 

with CrackNet, this method outperforms pixel-level crack segmentation and reduces training 

time, but the performance is lower in accuracy. Cui et al. [16] optimized the YOLOv3 model 

to detect damage on the surface of concrete structures of bridges due to the abrasion effect of 

wind loads. Long et al. [17] developed a “CNN model for crack detection” based on a modified 

Viraja model [18] by adding additional modules to the original model. The first module 

improves the data processing speed by replacing the C3 module in the original model with a 

more compact neural network. The second module is replaced with his simpler convolutional 

structure, while the third module is used to improve the accuracy of damage detection by 

eliminating upsampling. Similarly, Ye et al. [19] modified the YOLOv7 model by combining 

three self-developed modules, named YOLOv7-AMF, to detect cracks on the surface of 

concrete structures under noisy image conditions. These models handle the crack detection 

requirement, but the processing speed needs to be improved to meet the real-time sampling of 

the video. 

The YOLOv8 model has many outstanding advantages, such as real-time object 

recognition, high processing performance with only one neural network, the ability to 

accurately recognize objects in multi-object cases, and flexibility. YOLOv8 is compatible and 

supported on both CPU and GPU, taking advantage of advanced technologies such as 

NVIDIA's Tensor RT and Intel's OpenVino. In this study, the YOLOv8 model was developed 

by the research team to train crack recognition, and run quantization INT8 correction to provide 

optimal parameters of the model, helping the system to maintain the accuracy closest to the 

original model while increasing the processing speed of the model to meet the real-time 

response of the full HD camera as well as processing 30 FPS video recorded at the actual 

moving speed of the field inspection equipment.  

3. PROPOSED SOLUTION 

3.1. Data collection and sample synthesis 

Crack detection models often utilize open datasets containing images both with and without 

cracks. This study employs a dataset compiled from Kaggle, SDNET2018, and real surface 

crack images collected and augmented by the research team. To optimize computational 

efficiency and training, images were preprocessed and labelled with a single "crack" class using 

YOLOv8 format in Roboflow. The final training dataset comprises 4672 labelled concrete crack 

images. Data augmentation techniques, such as random cropping, resizing, rotation, and noise 

injection, were applied to enhance the detection of small cracks by introducing variations in 

scale, viewpoint, and occlusion, thereby improving the model's robustness and generalization 

capabilities [20, 21]. 



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

492 

 

Figure 1. Crack image data labelled on the research team's Roboflow platform. 

In this study, two main techniques are applied: histogram equalization and thresholding, in 

which the histogram equalization technique aims to enhance the image sample applied for 

sample addition, while thresholding mainly serves the observation, for experts to see the crack 

separately when evaluating. The histogram technique is a graph of the grey level distribution 

on the image, in the range [0, L-1], and the histogram is a function of the form (1): 

 
(1) 

Where, rk is the grey level value of the kth pixel, n is the total number of pixels, and nk is 

the total number of pixels with grey level rk. The P(rk) value estimates the grey level distribution 

in the image. A histogram is used to represent image information about the ability to enhance 

the contrast of the image. If the histogram is in the form of a narrow band, concentrated on one 

side of the left (or right), the corresponding image is dark (or bright). If the histogram is 

concentrated on the middle, the image has a low contrast level, and if the histogram is evenly 

distributed, the image will have high contrast. Therefore, the histogram equalization technique 

is applied here to redistribute the grey levels in the image, helping the histogram to be 

distributed in the range [0, L-1] so that the image has high contrast (Figure 2). Histogram 

equalization is performed by using a transformation of the form , distributing the 

probability density of the r pixels to create an image with grey levels with uniform density.  

The graph in Figure 2 illustrates the changes in the images before and after histogram 

equalization by the research team. The original image (top left) has uneven brightness, some 

areas may be too dark or too bright. The image after histogram equalization (bottom left) 

becomes clearer, and the contrast increases, allowing better observation of details. The 

histogram on the right clearly shows the improvement in the enhanced image sample. In the 

original image histogram (top right), the pixel values are concentrated in certain intensity 

ranges, indicating that the brightness and contrast are limited, and the image may be too dark 

or too bright in some areas. With the post-equalization image histogram (bottom right), the 

pixel values are more evenly spread over the entire intensity range (0-255), indicating that the 

image has better contrast, and the image becomes clearer with improved details.  



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

493 

 

Figure 2. Applying histogram equalization of concrete crack images on real samples of the 

research team to enhance the image sample and support observation. 

The histogram equalization enhances image contrast by redistributing light intensity, 

making the image easier to observe, especially in uneven lighting conditions, which is 

especially necessary in the working environment of surveying cracks in concrete bridge girder 

boxes. 

3.2. Quantization YOLOv8  

The structure of YOLOv8 includes the main parts: Backbone and Head. In the YOLOv8 

model types, the YOLOv8-n, YOLOv8-s, YOLOv8-m, YOLOv8-l, and YOLOv8-x models 

have different model sizes, which are considered for research and deployment on computers 

with suitable configurations. In this study, the research team used the Ultralytics YOLOv8 

version [22]. The model size will correspond to the mean average precision value (mAP) and 

be inversely proportional to the calculation and inference time of the model (Figure 3). This 

means that models with larger sizes have larger mAP values, but the inference time is also 

slower, and vice versa. Figure 4 shows the performance description of YOLOv8 models by size 

and compares the YOLOv8 model with other models. In this study, the research team chose the 

YOLOv8-l model [23] to optimize training time and computer resources, then applied 

quantization to speed up the system since this model has the highest accuracy. When optimizing 

the model, the achieved results will be highlighted with the best detection ability. 

For high-performance environments, particularly on NVIDIA GPUs, exporting Ultralytics 

YOLOv8 models to TensorRT optimizes them for fast and efficient inference. NVIDIA's 

TensorRT SDK accelerates deep learning inference through optimizations like layer merging, 

precision calibration (INT8), dynamic tensor memory management, and kernel auto-tuning. 

Converting models to TensorRT unlocks the full potential of NVIDIA GPUs. TensorRT 

supports various formats, including TensorFlow, PyTorch, and ONNX, providing flexibility for 

integrating and deploying models across diverse environments.  



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

494 

 

Figure 3. Model Architecture of YOLOv8 [23].  

 

Figure 4. Comparison of accuracy and performance of some YOLO family models [22]. 

 



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

495 

The research team uses quantization to optimize the performance of the model on NVIDIA 

graphics card-supported hardware devices, which requires making good use of the GPU and 

limiting the memory used. In addition to changing the structure to suit the environment and 

hardware deployed, an important factor in optimizing the model is the use of data types to help 

the model calculate. In the AI model, there are some popular formats such as FP32, FP16, and 

INT8 used as data standards for the AI model [17]. Model optimization not only brings the 

floating point representation format but also brings it to the integer format. Model quantization 

applies the commonly used format in the AI field, INT8, but not all AI models can run optimally 

with INT8. The quantization used in this paper by the research team is INT8. This format is 

being widely applied in Deep Learning workloads instead of FP32. Since lower precision 

weights in neural networks do not seem to matter and do not affect the performance of the 

model, the floating-point precision of FP format in general, and FP32, in particular, can be 

traded for speed.  

Step 1: Convert PyTorch to ONNX format 

ONNX (Open Neural Network Exchange) is an intermediate format that makes PyTorch 

models compatible with TensorRT. PyTorch models are usually in *.pth or *.pt format. To 

export a PyTorch model. We first need to convert it to an ONNX model. This process is done 

using “Algorithm 1: Convert PyTorch model to ONNX model”, as follows: 

Algorithm 1: Convert PyTorch model to ONNX model  

Function: Convert model 

INPUT: PyTorch model  

OUTPUT: ONNX model  

1: Name the output 

2: If: Set dynamic model input 

3: Then: Set input size according to batch index, width, height, and set personally 

4: If: offset version left blank 

5: Then: set default offset 

6: Export model 

7: Export model parameters 

8: Write the model file. 

9: If: enable simplification of the ONNX model 

10: Then: remove redundant parts of the model 

11: Save the model to the hard drive. 

Important information to note is that the version of ONNX is ported so that it can be 

deployed in other environments if that environment requires a specific version. Next are the 

input name (input_name) and output name (output_name), these are 2 important elements to 

put the image into the model via input and get the detection result at the output.  

Step 2: TensorRT model with quantization 

TensorRT uses ONNX as input and applies optimizations to create a TensorRT model, 

done using “Algorithm 2: Convert ONNX model to TensorRT model with quantization”, as 

follows:  



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

496 

Algorithm 2: Convert ONNX model to TensorRT model with quantization 

Function: Convert model 

INPUT: ONNX model 

OUTPUT: TensorRT model  

1: Set workspace size 

2: If: version greater than 10 

3: Then: set memory limit according to workspace 

4: Otherwise: set memory according to the maximum workspace value 

5: Set input and output 

6: If: Set dynamic input 

7: Then: set input, output according to auto-tuning parameter 

8: If: optimize int8 

9: Then: calibrate to get the calibration value for the configuration according to the 

sample set. 

10: Free CUDA memory 

11: Export model in *.engine format according to optimized configuration 

After performing the conversion, the model with the extension *.engine will be obtained, 

and the crack detection system will be deployed with this model. The performance on a batch 

size of INT8 is superior to FP32 if the Batch size is more, but if the value is 2 batch Size, the 

two are equivalent in performance, with a batch size equal to 4, the performance of INT8 is 

double that of FP32, and with a value of 128, the performance is increased by 3 times. In terms 

of efficiency, the memory of INT8 is less than FP32, which is natural because FP32 uses 32 

bits to represent, while INT8 only uses 8 bits, so the memory usage is also less. With a small 

batch size value, the memory difference is not large, but at a large scale like 128, FP32 takes 

up about 2.5 times more than INT8. In terms of accuracy, the two formats are equivalent in top1 

(about 70%) and top5 (about 90%). Although floating-point bits are not used, NVIDIA's test 

results in similar accuracy. The process of converting the model to TensorRT format and 

quantizing the model was performed by the research team in 2 steps: Converting the PyTorch 

model to ONNX format and converting ONNX to TensorRT.   

4. EXPERIMENTAL RESULT, MODEL EVALUATION, AND DISCUSSION 

The YOLOv8 quantization model was customized, trained with 200 epochs, a batch size 

of 32, and tasked with detecting only one class (class) of cracks. The test results of the model 

are illustrated in Figure 5. It can be seen that the model detects most of the cracks appearing on 

the surface of real concrete structures. To evaluate this model, the research team clarified the 

main parameters to measure the model's suitability to the requirements of the crack detection 

problem. The evaluation parameters used are Accuracy, Precision, Recall, and mAP. 

Our model was evaluated on a PC with a Ryzen 75000 series CPU, NVIDIA GeForce RTX 

3060 6GB GPU, and 23GB of RAM. The evaluation environment comprised Python 3.9, the 

PyCharm IDE, PyTorch 1.13, and cuDNN 11.7. PyTorch, a deep learning framework, leverages 

CUDA for GPU-accelerated computation, enabling faster model processing.  



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

497 

  

Figure 5. Results of testing surface crack image samples using the YOLOv8 quantization model of the 

research team.  

Figure 6 demonstrates the model's effective learning, as evidenced by the steadily 

decreasing loss functions and gradually increasing evaluation metrics (Precision, Recall, mAP). 

Minimal overfitting is observed, indicated by the comparable loss values between the training 

and test sets. The program automatically compares the newly trained model's parameters with 

the previous best, updating the best model if improved performance is achieved. This automated 

process ensures the best-performing model is used for quantization. The graphs in Figure 6 

show the loss values during training (top half) and testing (bottom half), as shown below:  

 

Figure 6. Model training graph after 280 epochs. 

The graphs in Figure 6 show training (top) and testing (bottom) loss and metric values. 

During training, the train/box_loss decreases over epochs, from ~2.5 to ~0.386, indicating 



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

498 

improved object localization. The train/cls_loss, related to object label prediction, drops sharply 

initially and then stabilizes, suggesting better object recognition. The train/dfl_loss 

(Distribution Focal Loss), a YOLO component enhancing detection, also gradually decreases, 

reflecting better distance prediction. The metrics/precision(B) plot shows accuracy increasing 

to approximately ~0.98, meaning 98% of predictions are correct, with significant improvement 

early on, followed by slight fluctuations. The metrics/recall(B) plot, representing sensitivity, 

increases from approximately ~0.3 to nearly ~0.97, indicating the model misses fewer objects. 

On the test set, the val/box_loss also decreases, though it's slightly higher than during training, 

suggesting room for improvement. The val/cls_loss decreases significantly with some 

fluctuations. The val/dfl_loss mirrors the train/dfl_loss on the test set, decreasing gradually and 

demonstrating improved distance prediction. The metrics/mAP50(B) increases from 0.19 to 

approximately ~0.95, indicating improved accuracy at IoU ≥ 50%. The more stringent 

metrics/mAP50-95(B), calculated across IoUs from 50 to 95%, also increase gradually from 

approximately ~0.07 to nearly ~0.84.   

Figure 7 plots the F1-score against the confidence threshold (ranging from 0 to 1). This 

threshold dictates the model's required confidence level for accepting predictions; higher 

thresholds lead to fewer accepted predictions. The F1-score, representing a balance between 

precision and recall, peaks when both are high and balanced. The F1 curve illustrates the 

relationship between F1-score and confidence threshold. Typically, F1 increases with the 

threshold initially, peaks, and then declines. The curve generally maintains a high F1 at low 

confidence levels but drops sharply above a threshold, such as 0.8. In Figure 7a, F1 reaches 

0.95 at a confidence threshold of 0.388, maintaining a high precision level before a sharper 

decline, and exhibiting minor fluctuations with good stability. In contrast, Figure 7b achieves 

an F1 of 0.91 at a 0.000 threshold, but its F1 degrades sooner and sharply despite appearing 

smoother. The original model, exhibiting a higher peak F1, may indicate superior classification. 

Tensor models tend to degrade faster due to information loss from quantization. While the 

original model excels at maintaining F1 across a broad confidence spectrum, a tensor model 

might be preferable for optimization within a specific range. 

 
(a) Original mode 

 
(b) Tensor mode 

Figure 7. F1-Confidence Curve. 

Figure 8's Precision-Recall curve illustrates the trade-off between precision and recall for 

the binary classification model across varying expectation thresholds. 



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

499 

  

(a) Original mode (b) Tensor mode  

Figure 8. Precision-Recall Curve.  

  

 

(a) Original mode 

 

(b) Tensor mode 

Figure 9. Precision-Confidence Curve.  

The Precision-Recall (PR) curve illustrates the trade-off between precision and recall at 

varying thresholds, particularly crucial for imbalanced datasets. Recall, plotted on the 

horizontal axis, represents the model's ability to detect actual objects (higher recall signifies 

fewer missed objects). Precision, on the vertical axis, indicates the accuracy of positive 

predictions (higher precision means fewer false positives). Figure 8 demonstrates that graph (a) 

has superior performance compared to graph (b), exhibiting both higher precision (0.954 vs. 

0.919), reflecting a better correct prediction rate, and a higher mAP@0.5 (0.954 vs. 0.919), 

indicating better overall performance. 



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

500 

Figure 9 shows the Precision-Confidence Curve. The horizontal axis (Confidence) is the 

model's confidence threshold, ranging from 0 to 1. This threshold determines the level of 

certainty that the model needs to have in predicting an object. As the confidence threshold 

increases, the model will only accept predictions with higher confidence, eliminating less 

confident predictions. The vertical axis (Precision) shows the model's accuracy at each 

confidence level. Precision is the ratio of the number of correct predictions (True Positives) to 

the total number of predictions that the model considers correct (including True Positives and 

False Positives). A high Precision value indicates that the model rarely makes incorrect 

predictions.  

The Precision curve illustrates the relationship between Precision and the confidence 

threshold. Lower confidence thresholds often lead to decreased Precision due to more incorrect 

predictions. As confidence increases, Precision improves as the model accepts fewer, more 

reliable predictions. Figure 9 shows that both models achieve perfect Precision (1.00) at specific 

confidence thresholds. However, model (a) reaches this level at a higher confidence threshold 

(0.959) than model (b) (0.855), suggesting model (a) requires greater confidence to achieve 

perfect Precision.  

 

(a) Original mode 

 

(b) Tensor mode  

Figure 10. Recall-Confidence Curve.  

Figure 10 shows the Recall-Confidence Curve. The horizontal axis represents the 

confidence threshold; as this threshold increases, the model only accepts predictions with higher 

confidence, discarding those with lower confidence. The vertical axis represents Recall, 

indicating the proportion of actual objects detected. Higher Recall signifies that the model 

detects a larger proportion of objects, thus missing fewer. In addition, Figure 10 demonstrates 

an inverse relationship between confidence threshold and Recall. Lower thresholds (0.0-0.2) 

result in higher Recall (0.91 for all classes), while higher thresholds decrease Recall by retaining 

only high-confidence predictions. At a 0.000 threshold, graph (a) shows a higher Recall (0.93) 

than graph (b) (0.87), suggesting graph (a)'s model is more effective at identifying positive 

cases even with low confidence. Evaluating both graphs at a 0.000 threshold provides a 

performance assessment without confidence filtering. 



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

501 

Table 1. Comparison table of the running speed of the YOLOv8 quantization model developed by the 

research team. 

 Original Model Model TensorRT 

Avg Time (s) 0.09677740030510482 0.018645330917003544 

FPS 10.33299093432304 53.63273006262675 

GPU Usage (%) 10.026041666666668 63.411458333333336 

RAM Usage (%) 59.6 60.0 

The model after quantization runs faster, but the reliability of object prediction will 

decrease. FPS to process a frame with the TensorRT model is 5 times faster on the same 

machine configuration. The amount of RAM used is not very different but the operation on the 

GPU is higher because the TensorRT model is implemented on NVIDIA GPUs. These 

parameters meet the processing of crack image recognition from videos using a 30 FPS full HD 

camera filmed by workers at the actual moving speed during field inspection. 

5. CONCLUSION 

The study has outlined the basic methods of applying artificial intelligence, machine 

learning models, deep learning, and digital image processing techniques in the field of computer 

vision to detect cracks on the surface of concrete structures. From there, the research team 

proposed to use the YOLOv8 quantization model, a new model with many outstanding 

advantages compared to the previous version, taking advantage of GPU acceleration to optimize 

processing speed and accuracy to detect objects quickly and accurately. Digital image 

processing techniques such as histogram equalization are also used to process images to 

enhance the sample, making it easier to detect cracks, as well as supporting expert observers.  

This study successfully quantized YOLOv8, leveraging GPU capabilities to optimize 

processing speed and accuracy. Using well-trained models, INT8 quantization reduced model 

size and increased speed, while maintaining accuracy close to the original FP32 model through 

dataset calibration. Converting the calibration dataset to TensorRT enabled efficient GPU 

memory management and integration into the inference pipeline. Real-world deployment on an 

NVIDIA GPU-based PC demonstrated a 5x reduction in processing time, a 5x increase in FPS, 

and a 6x increase in GPU utilization with comparable RAM usage. Optimized for NVIDIA 

GPUs, the YOLOv8 quantization model delivers real-time full HD video analysis at 30+ FPS 

for field inspections, balancing accuracy and speed. 

ACKNOWLEDGEMENT 

This research is funded by the Ministry of Education and Training (MoET), Vietnam under the 

grant number B2024-GHA-12.  



Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

502 

REFERENCES  

[1]. Q. Zou, Y. Cao, Q. Li, Q. Mao, S. Wang, CrackTree: Automatic crack detection from 

pavement images, Pattern Recognition Letters, 33 (2012) 227-238. 

https://doi.org/10.1016/j.patrec.2011.11.004  

[2]. M. Gavilán, D. Balcones, O. Marcos, D.F. Llorca, M.A. Sotelo, I. Parra, M. Ocaña, P. 

Aliseda, P. Yarza, A. k;mAmírola, Adaptive Road Crack Detection System by Pavement 

Classification, Sensors, 11 (2011) 9628-9657. https://doi.org/10.3390/s111009628   

[3]. Ngo Van Minh, Influence of shear stress to the formation of inclined cracks in webs of 

post-tensioned concrete box girder bridge constructed by the free cantilever method, Transport 

and Communications Science Journal, 70 (2019) 21-31. https://doi.org/10.25073/tcsj.70.1.40  

[4]. Chul Min Yeum, Shirley J. Dyke, Vision‐based automated crack detection for bridge 

inspection, Computer-Aided Civil and Infrastructure Engineering, 30 (2015) 759-770. 

https://doi.org/10.1111/mice.12141  

[5]. T. Nishikawa, J. Yoshida, T. Sugiyama, Y. Fujino, Concrete crack detection by multiple 

sequential image filtering, Computer-Aided Civil and Infrastructure Engineering, 27 (2012) 29-

47. https://doi.org/10.1111/j.1467-8667.2011.00716.x   

[6]. M. Salman, S. Mathavan, K. Kamal, M. Rahman, Pavement crack detection using the Gabor 

filter, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 

The Hague, Netherlands, (2013) 2039-2044. https://doi.org/10.1109/ITSC.2013.6728529  

[7]. Y. Fujita, Y. Hamamoto, A robust automatic crack detection method from noisy concrete 

surfaces, Mach Vis Appl, 22 (2011) 245–254. https://doi.org/10.1007/s00138-009-0244-5  

[8]. R. G. Lins, S. N. Givigi, Automatic Crack Detection and Measurement Based on Image 

Analysis, IEEE Transactions on Instrumentation and Measurement, 65 (2016) 583-590. 

https://doi.org/10.1109/TIM.2015.2509278   

[9]. L. Ying, E. Salari, Beamlet transform based technique for pavement image processing and 

classification, 2009 IEEE International Conference on Electro/Information Technology, 

Windsor, ON, Canada, (2009) 141-145. https://doi.org/10.1109/EIT.2009.5189598  

[10]. A. Cubero-Fernandez, Fco. J. Rodriguez-Lozano, Rafael Villatoro, Joaquin Olivares, Jose 

M. Palomares, Efficient pavement crack detection and classification, J Image Video Proc., 39 

(2017). https://doi.org/10.1186/s13640-017-0187-0  

[11]. H. Oliveira, P. L. Correia, Automatic Road Crack Detection and Characterization, IEEE 

Transactions on Intelligent Transportation Systems, 14 (2013) 155-168. 

https://doi.org/10.1109/TITS.2012.2208630  

[12]. Y. Shi, L. Cui, Z. Qi, F. Meng, Z. Chen, Automatic Road Crack Detection Using Random 

Structured Forests, IEEE Transactions on Intelligent Transportation Systems, 17 (2016) 3434-

3445. https://doi.org/10.1109/TITS.2016.2552248  

[13]. Fu Tao Ni, Jian Zhang, ZhiQiang Chen, Pixel‐level crack delineation in images with 

convolute ional feature fusion, Structural Control Health Monitering, (2019) 26:e2286. 

https://doi.org/10.1002/stc.2286  

[14]. L. Zhang, F. Yang, Y. Daniel Zhang, Y. J. Zhu, Road crack detection using deep 

convolutional neural network, 2016 IEEE International Conference on Image Processing 

(ICIP), Phoenix, AZ, USA, (2016) 3708-3712. https://doi.org/10.1109/ICIP.2016.7533052  

[15]. Xincong Yang, Heng Li, Yantao Yu, Xiaochun Luo, Ting Huang, Xu Yang, Automatic 

pixel‐level crack detection and measurement using fully convolutional network. Computer-

https://doi.org/10.1016/j.patrec.2011.11.004
https://doi.org/10.3390/s111009628
https://doi.org/10.25073/tcsj.70.1.40
https://doi.org/10.1111/mice.12141
https://doi.org/10.1111/j.1467-8667.2011.00716.x
https://doi.org/10.1109/ITSC.2013.6728529
https://doi.org/10.1007/s00138-009-0244-5
https://doi.org/10.1109/TIM.2015.2509278
https://doi.org/10.1109/EIT.2009.5189598
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/TITS.2012.2208630
https://doi.org/10.1109/TITS.2016.2552248
https://doi.org/10.1002/stc.2286
https://doi.org/10.1109/ICIP.2016.7533052


Transport and Communications Science Journal, Vol 76, Issue 04 (05/2025), 489-503 

503 

Aided Civil and Infrastructure Engineering, 33 (2018) 1090-1109. 

https://doi.org/10.1111/mice.12412  

[16]. Xiaoning Cui, Qicai Wang, Jinpeng Dai, Rongling Zhang, Sheng Li, Intelligent 

recognition of erosion damage to concrete based on improved YOLO-v3, Materials Letters, 302 

(2021) 130363. https://doi.org/10.1016/j.matlet.2021.130363  

[17]. Long Ngo, Chieu Luong Xuan, Hoang Minh Luong, Binh Ngo Thanh, Dung Bui Ngoc, 

Designing image processing tools for testing concrete bridges by a drone based on deep 

learning, Journal of Information and Telecommunication, 7 (2023) 227–240. 

https://doi.org/10.1080/24751839.2023.2186624  

[18]. Viraja1 crack detection: https://github.com/viraja1/crack_detection, Accessed March 28, 

2025. 

[19]. Guanting Ye, Jinsheng Qu, Jintai Tao, Wei Dai, Yifei Mao, Qiang Jin, Autonomous 

surface crack identification of concrete structures based on the YOLOv7 algorithm, Journal of 

Building Engineering, 73 (2023) 106688. https://doi.org/10.1016/j.jobe.2023.106688  

[20]. Yanjun Li (2024), Mathematical Modeling Methods and Their Application in the Analysis 

of Complex Signal System, Advances Mathematical Physics, Image Processing based on Partial 

Differential Equations, Special Issues (2022). https://doi.org/10.1155/2022/1816814 

[21]. P. Kaur, B. S. Khehra, E. B. S. Mavi, Data Augmentation for Object Detection: A Review, 

2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, 

MI, USA, (2021) 537-543. https://doi.org/10.1109/MWSCAS47672.2021.9531849   

[22]. Ultralytics, "Ultralytics YOLOv8," GitHub repository, 2023. [Online]. Available: 

https://github.com/ultralytics/ultralytics, accessed March 28, 2025. 

[23]. YOLOv8 Architecture: https://wandb.ai/mukilan/wildlife-yolov8/reports/Object-

detection-and-tracking-with-YOLOv8--Vmlldzo0MDU5NDA2, accessed March 28, 2025. 

 

 

https://doi.org/10.1111/mice.12412
https://doi.org/10.1016/j.matlet.2021.130363
https://doi.org/10.1080/24751839.2023.2186624
https://github.com/viraja1/crack_detection
https://doi.org/10.1016/j.jobe.2023.106688
https://doi.org/10.1155/2022/1816814
https://doi.org/10.1109/MWSCAS47672.2021.9531849
https://github.com/ultralytics/ultralytics
https://wandb.ai/mukilan/wildlife-yolov8/reports/Object-detection-and-tracking-with-YOLOv8--Vmlldzo0MDU5NDA2
https://wandb.ai/mukilan/wildlife-yolov8/reports/Object-detection-and-tracking-with-YOLOv8--Vmlldzo0MDU5NDA2

