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Abstract. Improving the convergence rate in finite element formulation plays an important role in 

studying the behavior of structures. This paper presents an efficient beam element to investigate the 

free vibration of bidirectional functionally graded beam. The beam is composed of four materials 

whose properties vary along both the length and thickness directions according to the power function, 

and these properties are evaluated by Voigt model. The equations of motion are derived using 

Hamilton’s principle within the framework of the higher-order shear deformation beam theory. A 

two-node beam element is formulated by enriching the conventional Lagrange and Hermite 

interpolations with trigonometric functions, leading to rapid convergence. The finite element 

formulation has been validated through comparison with previously published results, and showing 

good agreement. The enriched beam element is employed to compute the natural frequencies of 

bidirectional functionally graded (BFG) beams under different boundary conditions. The influence of 

the grading indices, slenderness ratio and boundary conditions on the natural frequency is examined 

in detail and highlighted. 
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1. INTRODUCTION  

With a high strength-to-weigh ratio, functionally graded (FG) materials – a novel type 

composite – are being increasingly utilized in aerospace, marine, mechanical, civil 
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engineering. Due to the growing application of FG materials, studying the response of FG 

structures is of growing importance. In recent years, numerous investigations on the vibration 

of FG beam using various methods have been reported. Using a new beam theory that had 

been developed for laminated composite beam, Sina et al. [1] analyzed the free vibration 

behavior of FG beam under different boundary conditions. By analytical method, their results 

indicated that the natural frequency predicted by new theory slightly differed from those 

obtained using the traditional first-order shear deformation beam theory. Wang and Li [2] 

employed the Levinson beam theory to analyze the free vibration behavior of FG beams, in 

which the influence of the material gradient parameter, the aspect ratio and the boundary 

conditions on the vibration response were discussed. With aid of Lagrange’s equation, Kahya 

and Turan [3] examined both the free vibration characteristics and the buckling response of 

FG beams. In their work, natural frequencies and buckling loads were determined using the 

first-order shear deformation theory in conjunction with finite element method. Avcar and 

Mohammed [4] focused on analyzing the free vibration of FG beams on a Winkler-Pasternak 

foundation within the framework of Euler-Bernoulli beam theory. In their research, the 

influence of elastic foundation stiffness and material characteristics on the dimensionless 

frequency parameters was thoroughly examined. Katili et al. [5] employed the Unified and 

Integrated Timoshenko beam theory to investigate both static and free vibration problems. 

Previous studies focused on beams whose material properties vary continuously along the 

thickness direction. In subsequent reports, the researchers investigated the behavior of the 

beams with material properties varying along thickness and length. With the volume fraction 

of the constituent materials represented by an exponential function, researchers in [6–8] 

applied the first-order shear deformation theory to study the vibrational response of two-

phase BFG beams. In Ref. [9], Vu Thi An Ninh employed different beam theories combined 

with the finite element method to compute the natural frequencies of BFG sandwich beams 

partially supported by an elastic foundation. By using the shape function as the solution of 

the static equations of equilibrium of an unstressed uniform Timoshenko beam, the 

dependence of the natural frequencies and dynamic magnification factor of four-phase BFG 

beam on two grading indices were examined by Nguyen et al. [10].  

The finite element method plays a crucial role in analyzing structures. Improving the 

finite element formulation's efficiency can be achieved by increasing the number of shape 

functions per element without modifying the mesh. Ribeiro [11] added polynomial functions 

to the conventional interpolation for the axial and transverse displacements to study 

geometrically nonlinear vibration of the beams and phane frames.  Shang et al. [12] applied 

the trigonometric and exponential functions to enrich the conventional finite element 

formulations in analyzing the dynamic elastoplastic behavior of Euler-Bernoulli beams. Hsu 

[13] used eriched C0 element to analyze the free vibration of Timoshenko beam. In his report, 

a basic two-nodes linear element was enriched by both hierarchical functions and 

trigonometric functions. The enriched third-order shear deformation beam element proposed 

by Le et al. [14] proved to be efficient in evaluating free vibration and buckling responses of 

BFG sandwich beams. Hierarchical functions were used in their study to enrich the Lagrange 

and Hermite interpolations of a traditional beam element 

This paper performs free vibration analysis of BFG beam using trigonometric enriched 

beam element. The beam consists of four different materials whose properties vary 

continuously along both the axial and thickness directions by a power-law distribution, and 

they are evaluated by Voigt model. By adopting the higher-order shear deformation beam 

theory for the displacement field, the beam’s governing equations are derived. The natural 
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frequencies of the BFG beam are evaluated using a two-node beam element with the 

Lagrange and Hermite interpolations enriched by trigonometric functions. Numerical studies 

are performed to demonstrate the efficiency of enriched beam element and to examine the 

significant effects of grading indices, slenderness ratio, and different boundary conditions on 

the natural frequencies of the BFG beam.  

2. MATHEMATICAL FORMULATION 

2.1. Four-phase BFG beam model 

Figure 1 shows a four-phase BFG beam with rectangular cross section (b  h). A 

Cartesian coordinate system (x,y,z) is established with its origin at the left end of the beam, 

the (x,y) plane lies in the beam’s mid-plane and the z-axis is oriented perpendicular to this 

plane, pointing upward.  

 

Figure 1. Geometry of four-phase BFG beam. 

The beam is considered to be composed of four distinct materials, two metals (M1 and 

M2) and two ceramics (M3 and M4), with volume fractions that change in both the thickness 

and longitudinal directions as follows [10] 
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 (1) 

where V1, V2, V3 and V4  represent the volume fractions of materials M1, M2, M3 and M4, 

respectively; nx and nz denote the grading indices in the axial and transverse directions, 

respectively; L represents the length of the beam. According to the Voigt model, the effective 

properties Pf, namely elastic modulus Ef, mass density ρf, Poisson’s ratio νf are computed as  

1 1 2 2 3 3 4 4fP PV PV PV PV= + + +  (2) 

with Pi (i=1,…,4) is the property of Mi (i=1,…,4). Combining Eqs. (1) and (2) gives us 
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 (3) 

If M1 and M3 are, respectively, identical to M2 and M4, then Eq. (3) simplifies to the 

expression for the effective properties of a two-phase transverse functionally graded beam. 

Furthermore, when nx=0, Eq. (3) yields  the effective properties of a transverse FG beam 

made of M2 and M4 [4] 
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 (4) 

 On the other hand, the effective properties of the axial FG beam composed of M3 and M4 if 

nz=0 as 

( ) ( )4 3 3

xn

f

x
P x P P P

L

 
= − + 

 
 (5) 

2.2. Governing equations 

Based on the higher - order shear deformation theory [15], the displacements of a point 

in the x and z direction are, respectively, given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 , ,

3

, , , , ,

, , , ,

b x s x

b s

u x z t u x t zw x t f z w x t

u x z t w x t w x t

= − +

= +
 (6) 

In Eq. (6), u(x,t) represents the axial displacement at a point along the x-axis; wb(x,t) and 

ws(x,t) denote the bending and shear components of transverse displacement, respectively; t 

represents the time variable; in the above equation and in what follows, a subscript comma 

indicates the derivative with respect to the variable that follows, and 

( )
3

2

4

3

z
f z

h
= −  (7) 

From Eq. (6), the axial strain εxx and shear strain γxz can be expressed as follows 

( ) ( ), , , , ,, 1xx x b xx s xx xz z s xu zw f z w f w = − + = +  (8) 

The axial and shear stressess, 
xx and

xz , have the following form   

( ) ( ), , ,xx f xx xz f xzE x z G x z   = =  (9) 

where ( )
( )

( )

,
,

2 1 ,

f

f

f

E x z
G x z

x z
=

 + 

is the effective shear modulus. 

The elastic strain energy of the beam U is given by 
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U dAdx   = +   (10) 

Here, A=bh denotes the beam’s cross-section area. From Eqs. (8), (9) and (10), the expression 

for the strain energy of the beam can be reformulated as follows 
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 (11) 

where the beam rigidities 
11 12 22 13 23 33, , , , ,A A A A A A  and 

33B are expressed by 
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The beam’s kinetic energy T is defined by 

( )( )2 2

1 3

0

1
,

2

L

f

A

T x z u u dAdx= +   (13) 

in above equation and hereafter, an over dot denotes the derivative with respect to the time 

variable. Eq. (6) allows the kinetic energy T in Eq. (13) to be expressed in the following form 
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where 
11 12 22 13 23 33, , , , ,I I I I I I are the mass moments and it is defined by 
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Hamilton’s principle applied to Eqs. (11) and (14) yields the  differential equations of 

motion for the beam as below 
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3. FINITE ELEMENT FORMULATION 

3.1. Enriched beam element 
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Assume a conventional two-node beam element having length l, the element’s nodal 

displacement vector consisting of ten degrees of freedom is represented as follows 

( )
 

10 1

ˆ
b s

T

u w w

=d d d d  (17) 

where 
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are the nodal displacement vectors for , bu w and 
sw at nodes 1 and 2. The displacements are 

interpolated from these nodal displacements as follows 

, ,
b su b w s wu w w= = =Nd Hd Hd  (19) 

here    1 2 1 2 3 4,N N H H H H=N = H are the matrices of the following Lagrange 

and Hermite shape function.  

1 2,
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By substituting Eqs. (17)-(21) into Eqs. (11) and (14), the stiffness and mass matrices for 

analyzing the free vibration of bidirectional four-phase FG beam can be obtained. 

In order to improve the beam element’s efficiency, the Lagrange and Hermite 

interpolation describled above are enriched by trigonometric functions. Here, four 

trigonometric functions are used to supplement the original interpolation functions, the 

displacements in Eq. (19) are rewritten as 
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function matrices; the vectors 
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The trigonometric functions are used to define the functions Ni (i=3…6) and Hj (j=5…8) 

as follows [11] 

3 1 4 1

5 2 6 2

2
cos 1 , cos 1 ,

cos 1 1 , cos 2 1 1

x x
N N N N

l l

x x
N N N N

l l

 

 

      
= − = −      

      

      
= − − = − −      

      

 (24) 

and 
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Using the enriched interpolations, the degrees of freedom vector d for an element consisting 

of 22 components is expressed as follows 
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 * * *

22 1 b b s s

T
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
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3.2. Element stiffness and mass matrices 

Based on the above enrichment interpolation, the expression for the beam’s strain energy 

in Eq. (11) is reformulated as follows 
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here nel refers to the total number of discretized beam elements; ki represents the stiffness 

matrix of the beam element and it is defined in the form of sub-matrix below 
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The sub-matrices in Eq. (28) are determined 
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Eq. (14) for the kinetic energy can also be expressed as 
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where mi is the element mass matrix and it is defined as  
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The components in matrix mi are defined as 
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(32) 

3.3. Discrete equation of motion 

Using the derived element stiffness and mass matrices, the equations of motion for BFG 

beam can be expressed as follows 

MD+ KD = 0  (33) 

where ,D D  denote the nodal displacement and acceleration vectors; M and K represent the 

global mass and stiffness matrices, respectivey, assembled from the element matrices mi and 

ki. By representing the nodal displacement vector as a harmonic function in free vibration 

analysis, Eq. (33) yields an eigenvalue problem for computing the natural frequency ω as 

follows 

( )2K - M D = 0  (34) 

where D represents the vibration amplitude. A standard method, as provided in [16], can be 

employed to solve Eq. (34). 

4. NUMERICAL ANALYSIS AND DISCUSSION 

A numerical investigation is performed in this section to confirm the effectiveness of the 

enriched beam element and to analyze the effects of the geometrical and material properties 

on the BFG beam’s free vibration. The beam used in the analysis has dimendions h=1 m, 

b=0.5 m and is considered under three distinct boundary conditions: 

• For simply-supported (S-S) beam:  (0, t) (0, t) (0, t) ( , t) ( , t) 0b s b su w w w L w L= = = = =  

• For clamped-clamped (C-C) beam: , ,(0, t) (0, t) (0, t) (0, t) (0, t) 0b s b x s xu w w w w= = = = =   

and   , ,( , t) ( , t) ( , t) ( , t) ( , t) 0b s b x s xu L w L w L w L w L= = = = =  

• For clamped-free (C-F) beam: , ,(0, t) (0, t) (0, t) (0, t) (0, t) 0b s b x s xu w w w w= = = = =  

In this study, the BFG beam consists of four constituent materials: stainless steel 

(SUS304) as M1, aluminum (Al) as M2, alumina (Al2O3) as M3 and zirconia (ZrO2) as M4. 

The properties of these materials are as follows [10] 
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• E1=210 GPa, ρ1=7800 kg/m3, ν1=0.3  for steel 

• E2=70 GPa, ρ2=2702 kg/m3,  ν2=0.23 for aluminum 

• E3=390 GPa, ρ3=3960 kg/m3,  ν3=0.3 for alumina 

• E4=200 GPa, ρ4=5700 kg/m3,  ν4=0.3 for zirconia 

 

The frequency parameter is defined as 

2

2

2

i i

L

h E


 =  (35) 

where 
i  is the ith natural frequency. 

The proposed beam element’s accuracy in this study is verified by comparison with 

previous work. Firstly, in the table 1, the fundamental frequency parameters for the two-

phase FG beam under S-S, C-C, C-F boundary conditions are calculated and compared with 

those obtained by Avcar and Mohammed [4] using Euler-Bernoulli beam theory. In this 

table, the beam made of Al and Al2O3, and their material properties vary along the thickness 

direction. As seen from table 1, the results obtained in this study show good agreement with 

those reported in Ref. [4], irrespective of the index nz and boundary conditions. 

Table 1. Comparison of the fundamental frequency parameter for a two-phase FG beam under 

different boundary conditions (nx=0, L/h=20). 

BC Source Al2O3 nz=1 nz=2 nz=10 Al 

SS Ref. [412] 5.483  4.221 3.852 3.559 2.849 

 Present 5.460     4.204     3.834     3.538 2.837 

CC Ref. [4] 12.43  9.569 8.732 8.068 6.459 

 Present 12.222     9.431     8.597     7.885 6.351 

CF Ref. [4] 1.953  1.504 1.372 1.268 1.015 

 Present 1.950     1.501     1.370    1.265 1.013 

To further verify the accuracy of the above formulas, the frequency parameter 
1  of the 

S-S bidirectional FG beam composed of four materials are computed and compared with that 

obtained by Timoshenko beam theory in Ref. [10], as shown in table 2. Regardless of axial 

and transverse grading indices, table 2 demonstrates good agreement between the results of 

the present study and those reported in Ref. [10].  

Table 2. Comparison of the frequency parameter 1  of the S-S bidirectional four-phase FG beam 

(L/h=20). 

nz Source nx=0 nx=1/3 nx=1/2 nx=5/6 nx=1 nx=4/3 nx=3/2 nx=2 

0 Ref. [10] 3.3018  3.7429 3.9148 4.1968 4.3139 4.5118 4.5956 4.8005 

 Present 3.3018     3.7430     3.9149     4.1971     4.3142     4.5121     4.5960     4.8008 

1/3 Ref. [10] 3.1542  3.5050 3.6305 3.8252 3.9022 4.0277 4.0792 4.2009 

 Present 3.1827     3.5302     3.6549     3.8484     3.9250     4.0498     4.1010     4.2221 
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1/2 Ref. [10] 3.1068  3.4285 3.5397 3.7087 3.7745 3.8805 3.9236 4.0245 

 Present 3.1560     3.4708     3.5801     3.7465     3.8113     3.9158     3.9582     4.0578 

5/6 Ref. [10] 3.0504  3.3296 3.4206 3.5548 3.6059 3.6869 3.7194 3.7947 

 Present 3.1361     3.4003     3.4871     3.6156     3.6646     3.7425     3.7737     3.8462 

1 Ref. [10] 3.0359  3.2984 3.3819 3.5035 3.5495 3.6219 3.6508 3.7177 

 Present 3.1355     3.3792     3.4575     3.5721     3.6155     3.6841     3.7116     3.7750 

Table 3 demonstrates the efficiency of the proposed beam element through the 

evaluation of the fundamental frequency parameters of S-S BFG beam. Both the enriched 

beam element (EBE) and conventional beam element (CBE) are calculated with different 

values of the grading indices. As obverved in table 3, EBE converges very fast, it only needs 

2 elements while CBE requires 20 elements to converge, regardless of the grading indices. 

Thus, element enrichment significantly improves the efficiency of the beam element in 

evaluating the frequency parameter of four-phase BFG beam.    

  Table 3. Convergence study of the beam elements for calculating the fundamental frequency 

parameter of the S-S bidirectional four-phase FG beam (L/h=10). 

nx nz Element type nel=1 nel=2 nel=4 nel=6 nel=16 nel=18 nel=20 

0.3 0.5 EBE 3.4068 3.4068     3.4068     -* - - - 

  CBE 3.8022     3.4303     3.4102     3.4081     3.4069     3.4068     3.4068    

 3 EBE 3.2478 3.2478 3.2478 - - - - 

  CBE 3.6374 3.2826 3.2545 3.2505 3.2481 3.2478 3.2478 

1 0.5 EBE 3.7657 3.7657 3.7657 - - - - 

  CBE 4.1225     3.7933     3.7695     3.7671     3.7659     3.7657     3.7657    

 3 EBE 3.3357 3.3356 3.3356 - - - - 

  CBE 3.6531 3.3679 3.3419 3.3383 3.3360 3.3359 3.3356 

Note: * unchanged 

The frequency parameter 
1 of the BFG beam with boundary conditions S-S, C-C, C-F 

is shown in table 4. The results in the beam are calculated with different values of  nx, nz and 

L/h. The table clearly shows that the parameter 
1 depends significantly on the grading 

indices, an increase in the axial grading index nx leads to a rise in the parameter 
1 , whereas 

an increase in the transverse grading index nz results in its reduction. The influence of the 

grading indices on the frequency parameter can be understood through the variation in 

material composition resulting from changes in nx and nz. As seen from Eq. (1), the beam 

with higher nx has higher percentage of M1 and M3, lower percentage of M2 and M4. Under 

the materials used in this study, the stiffness of the beam increases, thereby causing a rise in 

the frequency parameter. A similar explanation for the reduction in the frequency parameter 

with increasing index nz . The table 4 also shows that the beam with L/h=5 exhibits a smaller 

frequency parameter 
1  than the beam with L/h=20, regardless of the values of the grading 

indices or the boundary conditions. Furthermore, the C-C beam yieds the highest frequency 

parameter, while the C-F beam results the lowest frequency parameter value. 
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Table 4. Frequency parameter 1 of the four-phase BFG beam. 

  L/h=5     L/h=20    

BC nx nz=0.5 nz=1 nz=2 nz=5  nz=0.5 nz=1 nz=2 nz=5 

SS 0.3 3.2647     3.1808     3.1239     3.0489  3.4461     3.3611     3.3125     3.2473     

 1 3.6015     3.4135     3.2544     3.0816  3.8113     3.6155     3.4573     3.2858     

 3 3.9318     3.6203     3.3607     3.1091  4.1787     3.8507     3.5853     3.3292     

 5 4.0282     3.6786     3.3917     3.1209  4.2842     3.9156     3.6209     3.3442 

CC 0.3 6.4852     6.2613     6.0777     5.9148  7.7936     7.5268     7.3786     7.3132     

 1 6.9773     6.5523     6.1774     5.8262  8.3924     7.8853     7.4988     7.1769     

 3 7.3222     6.6649     6.1091     5.6144  8.8248     8.0371     7.4253     6.9116     

 5 7.4479     6.7221     6.1198     5.5928      8.9723     8.1034     7.4344     6.8770 

CF 0.3 1.3116     1.2969     1.3031     1.3242  1.3502     1.3359     1.3455     1.3724 

 1 1.4800     1.4527     1.4427     1.4402  1.5247     1.4982     1.4917     1.4941 

 3 1.5420     1.4759     1.4262     1.3814  1.5872     1.5211     1.4731     1.4307 

 5 1.5403     1.4533     1.3849     1.3233  1.5848     1.4971     1.4295     1.3691 

Figure 2 shows the variation of the first four frequency parameters with respect to the 

grading indices for beams with S-S, C-C, and C-F boundary conditions. In the figure, the 

resuts are shown for the case of a beam with L/h=20. According to the figure, the higher 

frequency parameter exhibit a similar dependence on the grading indices as the fundamental 

frequency parameter. Irrespective of the applied boundary conditions, increasing nx results in 

higher frequency parameters, while increasing nz causes them to decrease. The effect of the 

grading indices on the frequency parameters is attributed to variations in the proportions of 

constituent material, as discussed in table 4. Figure 2 demonstrates that the desired frequency 

parameters of the four-phase BFG beam can be achieved through suitable selection of nx and 

nz. 

 

Figure 2. Variation of the first four frequency parameters with grading indices for various boundary 

conditions (L/h=20). 
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Figures 3, 4 and 5 illustrate the influence of the beam’s slenderness ratio on the 

fundamental frequency parameter under various values of the grading indices for the S-S, C-

C, C-F beam, respectively. An increase in the slenderness ratio results in a higher 

fundamental frequency parameter, independent of the grading indices and the boundary 

conditions. The figures clearly demonstrate the opposing effects of the nx and nz indices on 

frequency parameter, an increase in nz leads to a decrease in the frequency parameter (as seen 

from figures 3a, 4a, 5a), while an increase in nx results in increasing frequency parameter  (as 

observed in figures 3b, 4b, 5b). Figures 3, 4 and 5 also indicate that the influence of the 

slenderness ratio on the fundamental frequency parameter becomes more pronounced when 

L/h<20. For L/h>20, the fundamental frequency parameters approach constant values, 

corresponding to those of the Euler-Bernoulli beam. This indicates that the shear deformable 

theories should be applied to short beams in the free vibration analysis of the BFG beam, 

while for the slender beams, the classical beam theory yields acceptable results for the 

frequency parameters. 

 

    Figure 3. Variation of the frequency parameter 1 of S-S BFG beam with slenderness ratio for 

different grading indices. 

 

    Figure 4. Variation of the frequency parameter 1 of C-C BFG beam with slenderness ratio for 

different grading indices. 



Transport and Communications Science Journal, Vol. 76, Issue 07 (09/2025), 965-979 

978 

 

    Figure 5. Variation of the frequency parameter 1 of C-F BFG beam with slenderness ratio for 

different grading indices. 

4. CONCLUSION 

A trigonometric enriched beam element has been employed in this paper to investigate 

the free vibration of a four-phase BFG beam. The beam consists of four constituent materials 

whose properties vary continuously along both the   length and thickness directions by a 

power law distribution, and they are evaluated using the Voigt model. Using Hamilton’s 

principle and the higher-order shear deformation beam theory, the differential equations of 

motion for the BFG beam are obtained. The element stiffness and mass matrices are 

formulated by enriching the standard Lagrange and Hermite interpolations with trigonometric 

functions. The natural frequencies of four-phase BFG beams with different boundary 

conditions have been computed through numerical studies. The effects of grading indices, 

slenderness ratio and boundary conditions on the beam’s natural frequency have been 

investigated. The main results obtained from the numerical analysis are summarized as 

follows: 

  

• The proposed enriched beam element in this work proves to be effictive for modeling 

vibration behavior of four-phase BFG beam. Using the enriched element can obtain 

accurate frequency with only a small number of elements. 

• Regardless of the boundary conditions, an increase in the index nx leads to higher 

frequency parameters, whereas increasing nz results in a decrease in the frequency 

parameters.  

• An increase in the slenderness ratio lead to a higher fundamental frequency parameter, 

irrespective of the grading indices and boundary conditions. 

• Under the considered boundary conditions, the C-C beam has the highest  frequency 

parameter, whereas the frequency parameter calculated from C-F beam is the lowest.   
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