
Transport and Communications Science Journal, Vol. 76, Issue 01 (01/2025), 64-78  

64  

 

Transport and Communications Science Journal 

 

REAL-TIME MULTI-SENSOR FUSION FOR OBJECT 

DETECTION AND LOCALIZATION IN SELF-DRIVING CARS: A 

CARLA SIMULATION 

Trung Thi Hoa Trang Nguyen1,2, Thanh Toan Dao2,*, Thanh Binh Ngo2 

1Hanoi College of High Technology, Nhue Giang Street, Tay Mo Ward, Nam Tu Liem District, 

Hanoi, Vietnam 

2University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam 

ARTICLE INFO 

TYPE: Research Article 

Received: 10/12/2024 

Revised: 06/01/2025 

Accepted: 10/01/2025 

Published online: 15/01/2025 

https://doi.org/10.47869/tcsj.76.1.6 
* Corresponding author 

Email: daotoan@utc.edu.vn; Tel: +84979379099  

Abstract. Research on integrating camera and LiDAR in self-driving car systems has 

important scientific significance in the context of developing 4.0 technology and applying 

artificial intelligence. The research contributes to improving the accuracy in recognizing and 

locating objects in complex environments. This is an important foundation for further 

research on optimizing response time and improving the safety of self-driving systems. This 

study proposes a real-time multi-sensor data fusion method, termed "Multi-Layer Fusion," 

for object detection and localization in autonomous vehicles. The fusion process leverages 

pixel-level and feature-level integration, ensuring seamless data synchronization and robust 

performance under adverse conditions. Experiments conducted on the CARLA simulator.  

The results show that the method significantly improves environmental perception and object 

localization, achieving a mean detection accuracy of 95% and a mean distance error of 0.54 

meters across diverse conditions, with real-time performance at 30 FPS. These results 

demonstrate its robustness in both ideal and adverse scenarios. 
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1. INTRODUCTION  

In recent years, the advancement of autonomous driving technology has been driven by 

the integration of sensor-based systems, with LiDAR emerging as a key player for 

environmental perception [1-3].  

Prominent companies like Waymo (Google) and Tesla have been pioneers in sensor 

integration for autonomous systems. Waymo's system combines camera and LiDAR data to 

enhance object detection and real-time decision-making, while Tesla focuses on multi-camera 

setups complemented by LiDAR for precise object localization [4,5]. 

In our previous research [6], a single-beam LiDAR-based navigation system was 

developed, utilizing neural networks to perform obstacle avoidance and ensure vehicle 

navigation in controlled environments. This approach demonstrated notable effectiveness in 

detecting and avoiding obstacles using cost-efficient and computationally lightweight setups. 

However, it faced limitations when applied to real-world, complex environments, where 

dynamic obstacles, varied lighting conditions, and intricate spatial layouts demand more 

sophisticated perception capabilities. 

To overcome these challenges, the integration of camera data with LiDAR offers a 

compelling solution. Cameras excel in capturing high-resolution images, enabling advanced 

object recognition and classification through visual processing. By fusing the spatial data from 

LiDAR with the detailed imagery from cameras, the system can leverage the complementary 

strengths of both sensors, significantly improving object detection, localization, and overall 

environmental understanding. 

This paper proposes a multi-layer data fusion framework that combines multi-beam 

LiDAR and camera data for autonomous navigation in complex environments. The approach 

addresses the limitations of single-sensor systems and enhances real-time decision-making by 

incorporating: 

• Layer 1 - Pixel-Level Fusion – Mapping LiDAR point clouds onto the camera’s image 

plane to achieve spatial alignment between depth and visual information. 

• Layer 2 - Feature-Level Fusion – Extracting and merging features from both sensors to 

generate a unified dataset for robust decision-making processes. 

The system integrates YOLOv8 for real-time object detection using camera data, while the 

LiDAR sensor provides precise distance and angle measurements. The proposed fusion method 

synchronizes data in both spatial and temporal domains, ensuring seamless integration and 

accurate environmental perception. 

Simulations conducted in the CARLA simulator validate the effectiveness of the proposed 

method under varying environmental conditions, including complex traffic scenarios and 

dynamic lighting. This enhanced framework not only demonstrates improved accuracy and 

responsiveness but also holds significant potential for real-world applications, particularly in 

the domains of dynamic obstacle avoidance and autonomous driving safety. 

This research contributes to the development of safer and more efficient autonomous 

systems capable of operating in real-world environments. 

2. RELATED WORK 

The integration of multi-sensor data, particularly from camera and LiDAR, has been a 

critical focus in autonomous vehicle research. Existing methods can be categorized into three 
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primary approaches: early fusion, late fusion, and hybrid fusion. Each approach has its 

advantages and limitations, which have been extensively studied in the literature. 

• Early Fusion: Raw sensor data is combined at the initial processing stages. For example, 

X.Chen et al. (2017) proposed MV3D, which projects LiDAR point clouds onto a bird’s-eye 

view and integrates them with camera image features for improved perception accuracy [7]. 

Similarly, J.Ku et al. (2017) introduced AVOD, which fuses raw sensor feature maps for robust 

3D object detection [8]. These methods leverage raw data but face challenges due to their high 

computational cost and stringent requirements for precise sensor synchronization. Moreover, 

early fusion can struggle in dynamic environments where real-time processing is critical. 

• Late Fusion: Sensor data is processed independently and merged during decision-

making. Geiger et al., (2012) demonstrated late fusion’s efficiency in reducing computational 

overhead using the KITTI dataset [9]. However, this approach has limitations in unstructured 

environments where the independence of sensor processing can lead to loss of spatial and 

temporal alignment. Late fusion also suffers from difficulties in capturing inter-sensor 

dependencies, which are crucial for complex perception tasks. 

• Hybrid Fusion: Recent research emphasizes real-time multi-sensor integration using 

hybrid approaches. For instance, Yin et al. (2020) integrated YOLOv4 with LiDAR for real-

time obstacle detection, achieving fast and accurate results [10]. Hybrid methods aim to balance 

the strengths of early and late fusion but often require complex architectures and calibration. 

In Vietnam, research remains in its early stages, with significant contributions from 

universities and companies like Phenikaa Group, which integrates LiDAR and camera data for 

urban autonomous vehicles. These efforts underscore the growing focus on sensor fusion for 

enhanced perception and localization. 

While the aforementioned methods have advanced object detection and localization, they 

exhibit several limitations: 

1) Environmental Conditions: Camera-based systems often fail in adverse conditions 

like poor lighting, rain, or fog, while LiDAR systems struggle with highly reflective 

or absorbent surfaces. 

2) Real-Time Processing: Computational efficiency remains a significant challenge, 

especially for methods relying on early fusion due to the volume of raw data. 

3) Robustness: Many methods assume ideal conditions for both sensors, which limits 

their effectiveness in real-world scenarios with dynamic obstacles and diverse 

environmental factors. 

To address these limitations, this paper proposes a multi-layer fusion approach that 

integrates pixel-level and feature-level data from both sensors. By combining the high-

resolution imagery of cameras with the accurate spatial data of LiDAR, the proposed method 

ensures robust perception across various lighting and weather conditions. Additionally, real-

time synchronization techniques mitigate latency issues, making the system practical for 

dynamic environments. 

3. PROBLEM FORMULATION 

3.1. Proposed method and data fusion process 
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Figure 1. An illustration of the overall framework.  

This section introduces a novel "Multi-layer fusion" method, which operates across two 

layers: Pixel-level fusion and Feature-level fusion. The proposed approach optimizes the 

advantages of each fusion method, enabling faster and more accurate system responses. An 

overview of the proposed model is depicted in Figure 1.  
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• Layer 1: Pixel-Level Fusion 

- Input: pixel data from camera and point cloud data from LiDAR 

- Output:  pixel coordinates 

• Layer 2: Feature-Level Fusion 

- Input: pixel coordinates 

- Output: location and distance of object in 3D space 

Here is the explanation of the mathematical details for the Multi-Layer Fusion method in 

Pixel-Level Fusion and Feature-Level Fusion: 

Algorithm Name: Multi-Layer Fusion for Camera-LiDAR Integration 

Input:  

• Camera data (Icamera): 2D image with pixel intensity values 

• LiDAR data (PLiDAR): 3D point clound {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)}𝑖=1
𝑁 , where N is the number of 

LiDAR points. 

• Camera Parameters: Intrinsic matrix K and extrinsic matrix [R  t] for 

transforming and aligning LiDAR data to the camera's coordinate frame. 

Output:  

• Fused image Ifused: A pixel-level combined representation of color and depth. 

• Object-level features F: A set of features F={F1, F2 ,…, Fn}, where Fi includes 

2D detection and 3D localization for each detected object. 

# Pixel-level Fusion 

1. Project the LiDAR point cloud PLiDAR onto the 2D camera plane using 

perspective projection: 

[
𝑢
𝑣
1

] = 𝐾 ∙ [
𝑅 𝑡

0 1
] ∙ [

𝑥
𝑦
𝑧
1

]                                             (1)   

Where:  

- K: Camera intrinsic matrix (focal length, principal point). 

- [
𝑅 𝑡
0 1

]: Homogeneous Extrinsic matrix (rotation and translation) aligning 

LiDAR to the camera frame. 

2. Assign depth z values from PLiDAR  to corresponding pixels in Icamera. 

3. Generate a fused image: 

𝐼𝑓𝑢𝑠𝑒𝑑(𝑢, 𝑣) = 𝛼 ∙
𝐼𝑐𝑎𝑚𝑒𝑟𝑎(𝑢, 𝑣)

𝐼𝑚𝑎𝑥
+ 𝛽 ∙

𝐷(𝑢, 𝑣) − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
                    (2) 

Where: 

𝐼𝑐𝑎𝑚𝑒𝑟𝑎(𝑢, 𝑣): Intensity (color) value from the camera, Imax is the 

maximum value of the color intensity (usually 255 in 8-bit images). 

- 𝐷(𝑢, 𝑣): Depth value from LiDAR at pixel (u, v), where Dmin and Dmax are 

the smallest and largest depth values in the entire image, respectively. 

- α, β: Weights to balance contributions from both sources, with α + β=1. 

Choosing 𝛼 and 𝛽 is important to ensure that the data from the camera and 

LiDAR are properly combined. It is possible to determine the α and β 

values automatically based on environmental conditions by building a 

system that classifies environmental conditions (e.g., light, fog, rain) 
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based on sensors. Then map the environmental conditions to the 

appropriate 𝛼 and 𝛽 values. Finally, evaluate the results on real-world data 

sets to fine-tune the parameters.  

# Feature-level Fusion 

4. Use YOLOv8 on Ifused to detect objects {O1, O2 ,… ,On} in the image extract 2D 

bounding boxes, each detected object Oi has: 

𝐵𝑖 = (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑐)                                  (3) 

Where:  

- (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥): Bounding box coordinates in the 2D image. 

- c: Object class. 

5. Localize each object in 3D space using LiDAR points within the detected 

bounding box, LiDAR points are used to compute the Euclidean distance and 

localize objects in 3D space. For each object Oi, the center point is computed as: 

𝐶𝑖 =
1

𝑁
∑ 𝑃𝑘

𝑁

𝑘=1

                                                           (4) 

Where: 

- Pk=(xk, yk, zk): LiDAR points within the 2D bounding box of Oi. 

- N: Number of LiDAR points associated with the object. 

6. Fuse 2D detection (Bi) and 3D localization (Ci) into object-level features: 

𝐹𝑖 = [𝐵𝑖, 𝐶𝑖]                                                          (5) 

Combine features from multiple objects: 

𝐹 = ∑ 𝑤𝑖 ∙ 𝐹𝑖

𝑛

𝑖 =1

                                                     (6) 

Where: wi is the weighting factor, which could depend on the reliability of the 

camera or LiDAR data. 

In the context of this method, spatial and temporal calibration (Calibration and 

Synchronization) are considered the factors that need to be addressed first, because they lay the 

foundation for all subsequent merging steps. If the calibration process is not accurate, the entire 

merging result will be affected. 

3.2. Problem  

3.2.1. Sensor Calibration, Time Synchronization, and Spatial Alignment 

Calibration and synchronization of the camera and LiDAR are essential steps in integrating 

these two sensors to ensure accurate perception and localization in autonomous systems. This 

process involves internal calibration, external calibration, and both spatial and temporal 

synchronization. Among these, temporal synchronization poses significant challenges, 

particularly in real-time applications, due to differences in data acquisition rates and processing 

times. One of the primary challenges in integrating camera and LiDAR data is the mismatch 

between the frame rate (FPS) of the camera and the scanning speed of the LiDAR: 

• Cameras typically operate at fixed frame rates, such as 30 or 60 FPS. 

• LiDAR sensors, on the other hand, generate point clouds at rates determined by their 

rotation speed (e.g., 10 Hz to 20 Hz). 

This difference creates a temporal misalignment, where camera frames and LiDAR scans 

do not correspond to the same moment in time, particularly in dynamic environments with fast-
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moving objects. Real-time systems exacerbate this challenge due to the need for immediate 

data fusion and decision-making. There are 2 methods to do this: 

• Hardware synchronization: 

- Use a common clock signal (e.g., GPS PPS). 

- Uniform timestamps. 

• Software synchronization: 

- Apply interpolation to match data between time frames. 

- Use the Kalman Filter algorithm to predict the next state of the object and match 

the time. 

Autonomous vehicles operating at high speeds or drones navigating in dynamic 

environments, hardware synchronization is generally the better option due to its accuracy and 

reliability. 

1) Internal calibration: Adjust the internal parameters of each camera and LiDAR sensor, 

including focal length, principal point, and distortion. The result is the internal matrix K. 

𝐾 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]                                                     (7) 

In which:  

• fx and fy are the focal lengths of the camera (in pixels) respectively on the x-axis and y-

axis, usually given: 

𝑓𝑥 = 𝑓𝑦 = 𝑓𝑜𝑐𝑎𝑙 =
image_w

2 × 𝑡𝑎𝑛 (
𝑓𝑜𝑣 × 𝜋

360 )
                                  (8) 

Where: 

+ focal is the focal length of the camera. 

+ image_w is the width of the image. 

+ fov is the field of view of the camera measured in degrees. 

• cx and cy are the optical centers (principal points), usually given: cx= image width /2 

and cy= image height /2 

• s is the skew factor, s=0 if the image axis is perpendicular 

• The values 0 and 1 in the remaining positions are to ensure the matrix has the correct 

geometry. 

2) External Correction: Determines the position and angle of the camera and LiDAR relative 

to each other in 3D space, using a rotation matrix and a displacement vector. The resulting 

matrix is: 

𝑇𝐿𝑖𝐷𝐴𝑅→𝐶𝑎𝑚𝑒𝑟𝑎 =  [
𝑅𝐿𝑖𝐷𝐴𝑅→𝐶𝑎𝑚𝑒𝑟𝑎 𝑡𝐿𝑖𝐷𝐴𝑅→𝐶𝑎𝑚𝑒𝑟𝑎

0 1
]               (9) 

3) Synchronize time using the Uniform timestamps method: The goal is to calculate the time 

interval between consecutive frames and use it to estimate the system's frame rate 

(Frames Per Second, FPS). This approach is fundamental for synchronizing time-sensitive 

operations like sensor data fusion or real-time processing. 

Algorithm Name: Uniform timestamps 

1. Initialize the System Time: 

• Record the initial time Tlast when the program starts or the loop begins. 

• This serves as a reference for measuring elapsed time during subsequent frames. 

Tlast = current_time()                                             (10) 
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2. Loop Through Frames: For each frame i (where i = 1, 2, … , N): Record the current 

time Tcurrent at the start of the frame. 

3. Calculate the time difference (delta time) ΔT between the current and last  recorded 

time:  

ΔT = Tcurrent − Tlast                                              (11) 

4. Estimate FPS: 

• If ΔT>0, calculate the FPS as:  

𝐹𝑃𝑆 =
1

∆𝑇
                                                      (12) 

• If ΔT≤0, set FPS=0 to avoid division by zero. 

5. Update Time Reference: Update Tlast for the next iteration: Tlast = Tcurrent 

6. Optional Frame Rate Control: 

• To maintain a consistent frame rate, introduce a delay:  

𝑑𝑒𝑙𝑎𝑦_𝑡𝑖𝑚𝑒 = 𝑚𝑎𝑥 (0,
1

𝑡𝑎𝑟𝑔𝑒𝑡_𝐹𝑃𝑆
− ∆𝑇)                 (13)  

• This ensures that each frame processing time aligns with the desired target FPS. 

4) Once the data is synchronized in time, the next step is spatial synchronization. Each sensor 

operates on its own coordinate system, so a transformation process is needed to bring all 

the data to the same common reference coordinate system. Specifically: 

• Camera: Operates in a 2D image coordinate system. 

• LiDAR: Operates in a 3D or 2D coordinate system (depending on the type of LiDAR 

used). 

The transformation between coordinate systems involves projecting the point clouds 

from the LiDAR onto the camera image space through a transformation matrix. This 

ensures that the points in the LiDAR space are accurately mapped onto the objects detected 

in the camera image (see Figure 1). 

Algorithm Name: Spatial synchronization 

1. Collect LiDAR Point Cloud: 

• Assume the LiDAR point cloud PLiDAR is a matrix of size N×3, where N is the 

number of LiDAR points, and each row represents a point with coordinates 

(x,y,z). 

• Convert the points into homogeneous coordinates by adding a fourth dimension 

with value 1: 

𝑃𝐿𝑖𝐷𝐴𝑅
homogeneous = [

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
⋮ ⋮ ⋮ ⋮

𝑥𝑁 𝑦𝑁 𝑧𝑁 1

]                              (14) 

2. Transform LiDAR Points to World Coordinates 

• Apply a transformation matrix TLiDAR→World to convert LiDAR points from the 

LiDAR coordinate system to the world coordinate system: 

𝑃𝑊𝑜𝑟𝑙𝑑
homogeneous = 𝑇𝐿𝑖𝐷𝐴𝑅→𝑊𝑜𝑟𝑙𝑑 × 𝑃𝐿𝑖𝐷𝐴𝑅

homogeneous                          (15) 

3. Transform World Coordinates to Camera Coordinates 

• Use the transformation matrix TWorld→Camera to map the points from the world 

coordinate system to the camera coordinate system: 
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𝑃𝐶𝑎𝑚𝑒𝑟𝑎
homogeneous = 𝑇𝑊𝑜𝑟𝑙𝑑→𝐶𝑎𝑚𝑒𝑟𝑎 × 𝑃𝑊𝑜𝑟𝑙𝑑

homogeneous                          (16) 

• Extract the first three rows (ignoring the homogeneous coordinate) to obtain the 

3D points in the camera coordinate system:  

𝑃𝐶𝑎𝑚𝑒𝑟𝑎 = [

𝑦𝐶𝑎𝑚𝑒𝑟𝑎

−𝑧𝐶𝑎𝑚𝑒𝑟𝑎

𝑥𝐶𝑎𝑚𝑒𝑟𝑎

] = [

𝑦𝐶𝑎𝑚𝑒𝑟𝑎,1 𝑦𝐶𝑎𝑚𝑒𝑟𝑎,2 … 𝑦𝐶𝑎𝑚𝑒𝑟𝑎,𝑁

−𝑧𝐶𝑎𝑚𝑒𝑟𝑎,1 −𝑧𝐶𝑎𝑚𝑒𝑟𝑎,2 … −𝑧𝐶𝑎𝑚𝑒𝑟𝑎,𝑁

𝑥𝐶𝑎𝑚𝑒𝑟𝑎,1 𝑥𝐶𝑎𝑚𝑒𝑟𝑎,2 … 𝑥𝐶𝑎𝑚𝑒𝑟𝑎,𝑁

]   (17) 

Because: 

- The x coordinate of LiDAR (outward direction) is the z coordinate of the 

camera. 

- The y coordinate of LiDAR (left to right direction) is the x coordinate of 

the camera. 

- The z coordinate of LiDAR (bottom to top direction) is opposite to the y 

coordinate of the camera so it will be −z. 

4. Convert Camera Coordinates to Pixel Coordinates 

• Map the camera coordinates to the 2D image plane using the intrinsic matrix K: 

𝑃𝑃𝑖𝑥𝑒𝑙 = 𝐾𝑃𝐶𝑎𝑚𝑒𝑟𝑎                                          (18) 

Extract the pixel coordinates (u, v) as: 

𝑢 =
𝑓𝑥. 𝑦𝐶𝑎𝑚𝑒𝑟𝑎

𝑥𝐶𝑎𝑚𝑒𝑟𝑎
+ 𝑐𝑥  ;    𝑣 =

−𝑓𝑦. 𝑧𝐶𝑎𝑚𝑒𝑟𝑎

𝑥𝐶𝑎𝑚𝑒𝑟𝑎
+ 𝑐𝑦                    (19) 

3.2.2. Object detection and localization 

1) Object detection and recognition in images is an important step in identifying important 

objects around the vehicle. Advanced algorithms include YOLO, SSD, and Faster R-

CNN. In our experiment, the YOLO model was chosen because of its combination of 

fast processing speed, high accuracy, ability to detect multiple objects in a single pass, 

and ability to perform well in real-world conditions. Especially in systems that require 

object recognition with fast and accurate response such as autopilot systems, YOLO is 

an ideal choice. 

2) Determining the distance and angle between a detected object and the vehicle using 

LiDAR involves leveraging geometric properties and sensor data. Assuming the object 

is defined by coordinates (xobj, yobj, zobj) and the LiDAR cloud point has coordinates at 

(xveh, yveh, zvel), the Euclidean distance d from the LiDAR to the object will be calculated 

by the formula: 

𝑑 = √(𝑥obj − 𝑥veh)
2

+ (𝑦obj − 𝑦veh)
2

+ (𝑧obj − 𝑧𝑣𝑒ℎ)
2

                             (20) 

For 360° LiDAR (full vehicle scan), the azimuth angle can be calculated by 

considering the LiDAR beams in the xy plane (horizontal plane): 

 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
) (

180

𝜋
)                                                 (21) 

Where: x and y are the coordinates of the LiDAR point in the xy plane.  

4. EXPERIMENTAL RESULT AND DISCUSSION  

Simulation tools like CARLA and Apollo are widely used for testing multi-sensor 

methods. Dosovitskiy et al. (2017) introduced CARLA as an open-source platform simulating 

realistic lighting, weather, and traffic scenarios [11,12]. 
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In this section, we detail the experimental results conducted in the CARLA simulation 

environment. CARLA was chosen for its robust capabilities in replicating real-world urban and 

highway scenarios, allowing for comprehensive testing under diverse environmental and traffic 

conditions. The experiments were designed to evaluate the performance of the integrated 

camera-LiDAR system in detecting and localizing objects under varying lighting and weather 

conditions. 

4.1. Introduction to CARLA 

CARLA (Car Learning to Act) is an open-source simulation platform specifically designed 

for autonomous vehicle research. It provides: 

• Realistic Urban Models: Predefined towns with configurable road layouts, buildings, 

and vegetation. 

• Dynamic Traffic Management: Integration of vehicles and pedestrians with realistic 

physics and behaviors. 

• Weather and Lighting Control: Flexible configuration of lighting conditions, time of 

day, and weather (e.g., clear skies, rain, fog). 

• Sensor Simulation: Support for various sensors, including RGB cameras, LiDAR, 

RADAR, and GNSS, with customizable parameters. 

The platform’s flexibility and realism make it a powerful tool for validating autonomous 

driving systems before deployment in real-world scenarios. Figure 2 is a map and scene of 

town number 10 in CARLA. 

 

Figure 2. Some scenes (left two) and town map 10 (right) in CARLA.  

4.2. Scenario Building 

To have more complex scenarios for testing, we choose and set some parameters for the 

environment as follows: 

• Town selection: CARLA provides 12 towns with different terrain and weather 

characteristics. 

- world = client.load_world('Town10') #change town with this command 

• Customize time and weather:  

- weather.sun_altitude_angle = -90.0 # -90: night, 0: sunrise/sunset, 90: noon 

- weather.cloudiness = 0.0 # Cloudiness level (0.0 is no clouds) 
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- weather.precipitation = 0.0 # Rainfall (0.0: no rain, 50.0: moderate rain, 100.0: 

heavy rain) 

- weather.fog_density = 0.0 # Fog density (0.0 is no fog) 

• Create vehicles and traffic participants to diversify the situation. Change the number 

of people and vehicles participating in traffic in function def parse_args() 

4.3. Sensor Configuration 

The vehicle was equipped with a camera and a multi-beam LiDAR, configured as follows: 

1) Camera Parameters: 

• Image Resolution: 680×420 pixels. 

• Field of View (fov): 90o, covering a wide horizontal field for comprehensive 

scene capture. 

• Placement: Mounted at the front of the vehicle for forward-looking perception. 

2) LiDAR Parameters: 

• Field of View: 

- Upper Field of View (upper_fov): 35o 

- Lower Field of View (lower_fov): −25o 

• Number of Channels: 64, simulating a high-resolution 3D LiDAR. 

• Maximum Range: 100 meters, allowing for detection of distant objects. 

• Placement: Positioned on the roof of the vehicle, providing a 360° view around 

the vehicle. 

Angle between channels =
350 − (−25𝑜)

64
≈ 0.94𝑜                    (22) 

This means that each channel will represent an angle of approximately 0.94° in the scan 

space. 

4.4. Building a simulation program 

 

Figure 3. Functional block diagram of the programs. 

Figure 3 shows illustrate the workflow of a CARLA simulation system that integrates 

LiDAR and camera sensors for data collection, processing, and analysis. The process consists 

of several stages: 
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1) Initialization: The simulation begins with parsing input arguments, connecting to the 

CARLA server, setting up the simulation, and configuring the environment (e.g., 

weather, map). 

2) Vehicle and Sensor Deployment: Vehicles and pedestrians are spawned in the 

simulation, and sensors such as LiDAR and cameras are attached to the vehicles. 

3) Data Collection: 

• LiDAR sensors capture point cloud data. 

• Cameras capture images of the environment. 

• The collected data is processed, and YOLO is used for object detection. 

4) Data Visualization and Logging: The processed LiDAR and camera data are 

combined and displayed using OpenCV. The results are logged into CSV files for 

further analysis. 

5) Simulation Termination: After data logging, the simulation stops. All actors (vehicles 

and pedestrians) are destroyed, and log files are saved for post-simulation evaluation. 

This workflow demonstrates an efficient approach to leveraging sensor data in 

autonomous vehicle simulation using CARLA. 

4.5. Simulation results 

First, we set up a vehicle in a fixed position to calibrate the sensors and check the spatial 

and temporal data synchronization. We also checked the distance and angle of the object 

measurement using the camera and LiDAR (see Figures 4 and 5). 

 

          

       

Figure 4. Calibration, time, and space synchronization results: (a) object detection using camera, (b) 

distance and angle measurement using LiDAR, (c) Integration of data from camera and LiDAR. 

 

 

(a) (b) 

(c) 

 

Choose the 

result with the 

smaller error 
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Figure 5. Comparison of distance and angle measurements using camera (left image) and LiDAR 

(right image). 

The results show that the distance measurements obtained from the camera have a larger 

error and the error is affected by the width and height ratio of the bounding box see (Figures 

4a and 5a), while LiDAR provides highly accurate distance measurements regardless of the 

location of the object. However, the camera has the advantage of detecting object types and 

providing information about the color and type of the object, which LiDAR cannot do. 

Therefore, combining data from both sensors will enhance the vehicle's perception of the 

surrounding environment, thereby improving the accuracy of navigation decision-making. For 

multi-beam LiDAR, noise handling, and accurate object localization are quite complicated and 

consume a lot of computer resources. As observed in Figure 5b', we used the method of filtering 

cloud points according to the minimum height threshold to remove cloud points on the ground 

and filtering according to the intensity of the response to remove points that are too far away 

and not on the object (these points are usually located in the two upper corners of the bounding 

box). The application of the integrated data is as follows: 

1) Object Tracking: Use angular data to classify objects within the vehicle's field of view 

into left, right, or forward zones. 

2) Path Planning: Combine distance and angle data to adjust the vehicle's trajectory and 

avoid obstacles. 

3) Targeted Object Interaction: Allocate processing resources to objects within a critical 

angular range (e.g., the forward-driving cone).  

We evaluated the proposed method for detecting and locating objects (humans and 

vehicles), under various traffic and lighting conditions. The results are presented in Figure 6 

 
 

(a) 

(a’) 
(b’) 
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Filter out cloud 
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and Table 1. The results show that the proposed method achieves high performance in the test 

scenarios.  

  

  

Figure 6. Simulation results under different weather and lighting conditions. 

Table 1. Number of detected and located objects in scenarios (confidence>0.6). 

Number of detected 

objects/Number of 

real objects 

Daytime, good 

light and 

weather 

At night, no 

rain, no fog 

During the day, 

no rain, dense 

fog 

At night, heavy 

rain, low fog 

density 

Camera 3/3 3/3 2/4 3/5 

Camera-LiDAR 

With α and β 

3/3 
α=0.8, β=0.2 

3/3 
α=0.5, β=0.5 

4/4 
α=0.3, β=0.7 

5/5 
α=0.4, β=0.6 

Mean error 

(distance) 

0.53516553 0.536226235 0.546190559 0.558860899 

With the values of 𝛼 and 𝛽 optimized for each condition, we will always be able to take 

advantage of the strengths of both data sources. This allows the system to maintain performance 

even if one of the two sources is degraded or lacking data. Additionally, if we want to improve 

further, we can apply methods to dynamically adjust 𝛼 and 𝛽 over time, based on the detection 

of environmental conditions from the sensors. 

The results show that the proposed method significantly improves the ability of 

autonomous vehicles to perceive their surroundings in low light and adverse weather 

conditions. 

5. CONCLUSION  

This study demonstrates the potential of integrating camera-LiDAR data to enhance 

environmental perception for autonomous vehicles. The integrated system, evaluated on the 

CARLA simulation platform, demonstrated robust performance across various scenarios: 

(a) (b) 

(c) (d) 
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1) In ideal conditions (daytime, clear weather), the system detected 100% of objects 

(3/3) with a mean distance error of 0.53 meters. 

2) Under challenging conditions (nighttime, heavy rain, low fog density), the system 

detected 5/5 objects with a mean error of 0.56 meters, outperforming camera-only 

systems. 

3) Across all scenarios, the system maintained real-time performance at 30 FPS, 

showcasing its practical potential for real-world applications."  

Future work will focus on adapting this method to cost-efficient setups, such as replacing 

multi-beam LiDAR with single-beam alternatives, while preserving detection and localization 

accuracy. 
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