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Abstract. The problem of polynomial optimization plays an important role in many fields 

such as physics, chemistry, and economics. This problem has received research attention 

from many mathematicians recently. In this paper, we study the polynomial optimization 

problem over a non-compact semi-algebraic set, for which its constraint set of polynomials 

𝐺  is asymptotic with a finite family of monomials. By changing variables via a suitable 

monomial mapping, we transform the problem under consideration into the polynomial 

optimization problem over a compact semi-algebraic feasible set. We then apply the well-

known result that the optimal value of a polynomial over a compact semi-algebraic set can 

be approximated as closely as desired by solving a hierarchy of semi-definite programs and 

the convergence is finite generically, to obtain results in the general case when the cone 𝐶(𝐺) 

is unimodular. In particular, in the case of polynomials in two variables, we solve the problem 

quite completely without requiring 𝐶(𝐺) to be unimodular. 
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1. INTRODUCTION  

We consider the problem of optimizing a polynomial function over a closed semi-algebra 

set that has the following form: Compute  

𝑓∗ = 𝑖𝑛𝑓
𝑆

𝑓(𝑥) , with 𝑆 = [𝐺 ≤ 𝑠] ≔ {𝑥 ∈ ℝ𝑛|{𝑔1(𝑥) ≤ 𝑠1, … , 𝑔𝑚(𝑥) ≤ 𝑠𝑚},where 𝐺 ≔

{𝑔1, … , 𝑔𝑚}  is a set of polynomials in ℝ[𝑥]  and 𝑠: = {𝑠1, … , 𝑠𝑚}  is a set of positive real 

numbers. Finding the global optimal value of a polynomial on a semi-algebraic is an NP-hard 

problem (see [1] or [2]). However, it is well-known that a systematic procedure has been 

established to solve polynomial optimization problems on compact basic semi-algebraic sets by 

Lasserre in [3]. It consists of a hierarchy of semidefinite programs of increasing size whose 

associated sequence of optimal values is monotone nondecreasing and converges to the global 

optimum. The proof of this convergence is based on powerful theorems from real algebraic 

geometry on the representation of polynomials that are positive on a basic semi-algebraic set 

via sum of squares, the so-called Positivstellensatze of Schmüdgen [4] and Putinar [5]. In 

addition, nice literature on the application of ‘sums of squares and moment problem’ to the 

polynomial optimization problems can be found in [6–8] and the references therein. However, 

when the feasible set is unbounded, the Schmüdgen and Putinar’s Positivstellensatze do not 

hold anymore except in some special cases. Therefore, the convergence of the Lasserre’s 

hierarchy cannot be guaranteed in general. A nice attempt to overcome the compact case is the 

work of Jeyakumar et al. [9], where a class of polynomial optimization problems with non-

compact semi-algebraic feasible sets was studied. In their paper, the associated quadratic 

module, which is generated in terms of both the objective function and the constraints, is 

required to be Archimedean to show that the corresponding hierarchy converges and the 

convergence is generically finite. 

We also consider in this paper a class of polynomial optimization problems on non-

compact closed basic semi-algebraic feasible sets when their constraint polynomials are 

asymptotic with a family of monomials. The semi-algebraic sets under consideration are nice 

enough so that after changing variables via monomial mappings, these sets become compact. 

Furthermore, the optimal value of a polynomial over the original semi-algebraic set and that of 

the corresponding polynomial over the obtained compact semi-algebraic set are the same when 

some appropriate conditions are given. Therefore, the polynomial optimization problem on a 

non-compact semi-algebraic feasible set can be transformed into the one over the compact 

feasible set. This problem has been solved in the general case when the convex cone 

corresponding to the semi-algebraic set is unimodular as in [10]. In this paper, we solve the 

problem completely in the case of two variables without requiring that the convex cone 

corresponding to the semi-algebraic set is unimodular. 

We organize our paper as follows: In Section 2, we give notations and the asymptotic 

concept of the polynomial family and survey some results on polynomial optimization 

problems, mainly in [10] and references therein. Section 3 is devoted to the study of the 

polynomial optimization problem on the set [G ≤ s] when G is a family of polynomials in two 

variables, G is U-asymptotic and U generates the cone C(G), but without requiring C(G) to be 

unimodular as in [10]. 
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2. PRELIMINARY 

As usual, we denote the set of integers and the field of real numbers by ℤ and ℝ , 

respectively. Denote the ring of polynomials in 𝑥 = (𝑥1, … , 𝑥𝑛) with real coefficients by ℝ[𝑥]. 
ℤ+, ℕ, ℝ+ stand for the set of positive integers, the set of non-negative integers, and the set of 

positive real numbers, respectively. Let 𝐺 ≔ {𝑔1, … , 𝑔𝑚} be a set of polynomials in ℝ[𝑥] and 

𝑠: = {𝑠1, … , 𝑠𝑚} ⊂ ℝ+. A semi-algebraic set corresponding to 𝐺 is the set: 

                              [G ≤ 𝑠] ≔ {𝑥 ∈ ℝ𝑛|{𝑔1(𝑥) ≤ 𝑠1, … , 𝑔𝑚(𝑥) ≤ 𝑠𝑚}.                            (1) 

Throughout the paper, 𝑔𝑖(𝑥) is always assumed to be zero for every 𝑖. Assume that the set 
[𝐺 ≤ 𝑠]  is not empty. We consider the problem of minimizing a polynomial 𝑓 ∈ ℝ[𝑥]  on 
[𝐺 ≤ 𝑠]. We are interested in computing the optimal value: 

                                 𝑓∗ ≔  𝑖𝑛𝑓 {𝑓(𝑥)| 𝑥 ∈ [𝐺 ≤ 𝑠]}.                                                  (2) 

For 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℕ𝑛, we denote 𝑥𝑎 ≔ 𝑥1
𝑎1 … 𝑥𝑛

𝑎𝑛 . In this paper, we are interested 

in the optimal problem when 𝐺  is asymptotic with a set of monomials as the following 

definition. 

Definition 1 (see [10, Definition 2.1]). Let 𝐺 ≔ {𝑔1, … , 𝑔𝑚} be a finite set of polynomials 

in ℝ[𝑥] and 𝑈 ⊂ ℕ𝑛 a finite set of non-zero vectors. 𝐺 is said to be 𝑈 −asymptotic if there exist 

positive numbers 𝑐, 𝑀 such that 

𝑐|𝑥𝑎| ≤ max
1≤𝑖≤𝑚

𝑔𝑖(𝑥) , ∀𝑎 ∈ 𝑈, 𝑥 ∈ ℝ𝑛, ∥ 𝑥 ∥> 𝑀.                           (3) 

The inequality (3) is equivalent to 

𝑐 ∑|𝑥𝑎|

𝑎∈𝑈

≤ max
1≤𝑖≤𝑚

𝑔𝑖(𝑥) , 𝑥 ∈ ℝ𝑛, ∥ 𝑥 ∥> 𝑀.                                  (4) 

We emphasize that constants 𝑐  in (3) and (4) may be different. We also say that the 𝐺  is 

asymptotic with the family of monomials {𝑥𝑎| 𝑎 ∈ 𝑈}. 

 We survey some results of the polynomial optimization problems on [𝐺 ≤ 𝑠] when the 

convex cone 𝐶(𝑈) is unimodular (as below definition) in [10], where 𝐶(𝑈) is the closed convex 

cone of the first orthant generated by 𝑈. 

 For 𝑓 ∈ ℝ[𝑥], we can write 𝑓(𝑥) = ∑ 𝑓𝑎𝑥𝑎
𝑎∈ℕ𝑛 , where 𝑓𝑎 ∈ ℝ. The support of 𝑓 is the 

set 𝑠𝑢𝑝𝑝(𝑓) ≔ {𝑎 ∈ ℕ𝑛| 𝑓𝑎 ≠ 0}. Let 𝐺 ≔ {𝑔1, … , 𝑔𝑚} be a subset of ℝ[𝑥]. Then 𝑠𝑢𝑝𝑝(𝐺) is 

defined as the union of the supports of all 𝑔𝑖, 𝑖 = 1,2, … , 𝑚. 𝐶(𝐺) is denoted as the convex cone 

generated by 𝑠𝑢𝑝𝑝(𝐺). Let 𝑌 = {𝑦1, … , 𝑦𝑘} be a finite subset of ℝ[𝑥]. We define the set 

                                           ℝ[𝑌] ≔ {𝑓(𝑦1, … , 𝑦𝑘)| 𝑓 ∈ ℝ[𝑥1, … , 𝑥𝑘]}. 

For any ℝ − subalgebra 𝒜, we say that 𝒜 is generated by 𝑌 = {𝑦1, … , 𝑦𝑘} or 𝑌 generates 𝒜 if 

𝒜 = ℝ[𝑌].  

A convex cone 𝐶 generated by 𝑝 vectors 𝑏1, … , 𝑏𝑝 in ℕ𝑛 is defined by: 

𝐶 ≔ 𝐶(𝑏1, … , 𝑏𝑝) ≔ {𝑡1𝑏1 + ⋯ + 𝑡𝑝𝑏𝑝|𝑡1 ≥ 0, … , 𝑡𝑝 ≥ 0}.                             (5) 

We can always assume that the greatest common divisor of the coordinates of each 𝑏𝑖 is one 

for every 𝑖 = 1, … , 𝑝. A convex cone 𝐶 ⊂ (ℝ+)𝑛  is said to be unimodular if there exists a 

generator set of n-vectors 𝑎1, … , 𝑎𝑛 ∈ ℕ𝑛 such that 𝑑𝑒𝑡[𝑎1 … 𝑎𝑛] = 1, where [𝑎1 … 𝑎𝑛] is the 
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matrix with 𝑎𝑖- its 𝑖𝑡ℎ column. We define the first parallelepiped of C to be the subset H(C):                                     

𝐻(𝐶) ≔ {𝑡1𝑏1 + ⋯ + 𝑡𝑝𝑏𝑝|0 ≤ 𝑡𝑖 ≤ 1, ∀𝑖 = 1, … , 𝑝} ∖ {𝑏1 + ⋯ + 𝑏𝑝}.                        (6) 

Lemma 1 (see [10], [11]). Let 𝒜(𝐶) denote the set of all polynomials with supports in the 

convex cone 𝐶 . Then 𝒜(𝐶) is an algebra generated by the finite set of many monomials 

{𝑥𝑎| 𝑎 ∈ 𝐻(𝐶) ∩ ℕ𝑛},  that is 𝒜(𝐶) = ℝ[𝑥𝑎|𝑎 ∈ 𝐻(𝐶) ∩ ℕ𝑛].  Particurlarly, if 𝐶  is 

unimodular generated by n-vectors 𝑎1, … , 𝑎𝑛 ∈ ℕ𝑛  with 𝑑𝑒𝑡 [𝑎1 … 𝑎𝑛] = 1  then 𝒜(𝐶) =

 ℝ[𝑥𝑎1
, . . . , 𝑥𝑎𝑛

]. 

 Given a semi-algebraic set 𝑆 ⊂ ℝ𝑛, denoted by 𝐵(𝑆) the set of all polynomials in ℝ[𝑥], 
which are bounded on 𝑆. Then, 𝐵(𝑆) is a real sub-algebra of ℝ[𝑥], and is sometimes called the 

bounded algebra for short.  

Proposition 1 (see [10, Proposition 2.2]). Let 𝐺 ≔ {𝑔1, … , 𝑔𝑚} be a finite family of ℝ[𝑥], 
U be a finite subset of 𝐶(𝐺) ∩ ℕ𝑛 ∖ {0};  𝑠 ≔ (𝑠1, … , 𝑠𝑚) be a sequence of 𝑚 positive real 

numbers. If 𝐺 is U-asymptotic and U generates 𝐶(𝐺) then  

                                                     𝐵([𝐺 ≤ 𝑠]) = 𝒜(𝐶(𝐺)) = 𝒜(𝐶(𝑈)). 

 Let 𝐺 ≔ {𝑔1, … , 𝑔𝑚} be a finite family of ℝ[𝑥], by Lemma 1. Then we can assume that 

there exist 𝑘  vectors 𝑎1, … , 𝑎𝑘 ∈ 𝐻(𝐶(𝐺)) ∩ ℕ𝑛  such that 𝒜(𝐶(𝐺)) = ℝ [𝑥𝑎1
, … , 𝑥𝑎𝑘

].  Put 

the matrix 𝐴 ≔ [𝑎1 … 𝑎𝑘], where 𝑎𝑖 is the 𝑖𝑡ℎ-column of 𝐴. We consider the mapping 

                                      Φ(=  ΦA): ℝ𝑛 ⟶ ℝ𝑘, 𝑥 ⟼ 𝑢 = 𝑥𝐴 = (𝑥𝑎1
, … , 𝑥𝑎𝑘

).  

We call such mapping a monomial mapping. For any polynomial 𝑓(𝑥) in ℝ[𝑥], 𝑓(𝑥) belongs 

to 𝒜(𝐶(𝐺)) if and only if there exists 𝑓(𝑢) in ℝ[𝑢] = ℝ[𝑢1, … , 𝑢𝑘] such that 𝑓(𝑥) = 𝑓(𝑥𝐴) =

𝑓(Φ(𝑥)).  So, for each 𝑖 = 1, … , 𝑚,  by 𝑔𝑖 ∈ 𝒜(𝐶(𝐺)),  there exists 𝑔̂𝑖(u) ∈ ℝ[u]  such that 

𝑔𝑖(𝑥) = 𝑔̂𝑖(𝑥𝐴). We put the set 

[𝐺̂ ≤ 𝑠] ≔ {𝑢 ∈  ℝ𝑘|𝑔̂𝑖(𝑢) ≤ 𝑠𝑖, 𝑖 = 1, … , 𝑚}. 

In this paper, 𝐺  is assumed to be 𝑈 -asymptotic and 𝑈 ⊂ ℕ𝑛 ∖ {0}  generates 𝐶(𝐺). By 

Proposition 1, the bounded polynomials set 𝐵([𝐺 ≤ 𝑠]) equals 𝒜(𝐶(𝐺)) = ℝ[𝑥𝐴]. Hence, for 

all 𝑓(𝑥) which is bounded on [𝐺 ≤ 𝑠], there also exists 𝑓(𝑢) in ℝ[𝑢] = ℝ[𝑢1, … , 𝑢𝑘] such that 

𝑓(𝑥) = 𝑓(𝑥𝐴). Note that if 𝑓(𝑥) is in 𝐵([𝐺 ≤ 𝑠]) then there exists its infimum on [𝐺 ≤ 𝑠]. 

Theorem 1 (see [10, Theorem 3.1]). Let 𝑆 ≔ [𝐺 ≤ 𝑠] be a basic closed semi-algebraic set 

defined as above. Assume that 𝐺 is U-asymptotic, 𝐶(𝑈) = 𝐶(𝐺), and the set 𝑆̂ ≔ [𝐺̂ ≤ 𝑠] is 

the same as the closure 𝑆̂ ∩ (ℝ ∖ 0)𝑛 of 𝑆̂ ∩ (ℝ ∖ 0)𝑛 in usual topology. Then 

(i). 𝑆̂ = [𝐺̂ ≤ 𝑠] is a compact set, 

(ii). For every polynomial 𝑓 bounded on 𝑆 = [𝐺 ≤ 𝑠], we have 

𝑖𝑛𝑓
𝑆

𝑓 (𝑥) = 𝑖𝑛𝑓
𝑆̂

𝑓(𝑢) = 𝑓(𝑢∗) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑢∗ ∈ 𝑆̂.  

3. POLYNOMIALS IN TWO VARIABLES ASYMPTOTIC MONOMIALS AND 

APPLICATION 

In this section, we consider the case of polynomials in two variables. Let 𝐺 ≔ {𝑔1, … , 𝑔𝑚} 
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be a finite subset of the ring of polynomials in two variables ℝ[𝑥] = ℝ[𝑥1, 𝑥2], 𝑠 ≔ (𝑠1, … , 𝑠𝑚) 

be a sequence of 𝑚 positive real numbers. Then [𝐺 ≤ 𝑠] ≔ {𝑥 ∈ ℝ2|𝑔1(𝑥) ≤ 𝑠1, … , 𝑔𝑚(𝑥) ≤
𝑠𝑚} is a basic semi-algebraic set in ℝ2. For the cone 𝐶(𝐺) in ℝ2, there are two cases. The first 

case is that  𝐶(𝐺) is a one-dimensional cone. That means, there exists a vector 𝑎 ∈ ℕ2 ∖ {(0,0)} 

such that 𝐶(𝐺) = 𝐶(𝑎). The second case, 𝐶(𝐺) is a two-dimensional cone which means that 

there exist two linear independent vectors 𝑎, 𝑏 ∈ ℕ2 such that 𝐶(𝐺) = 𝐶(𝑎, 𝑏). For each case, 

to solve the optimization problem on [𝐺 ≤ 𝑠], we will follow the ideas in [10]. However, we 

have an improvement over [10], we solve the problem without requiring 𝐶(𝐺)  to be 

unimodular. 

3.1. The cone 𝑪(𝑮) is a one-dimensional cone 

Assume that 𝐶(𝐺) is generated by the vector 𝑎 ∈ ℕ2 ∖ {(0,0)}, where the greatest common 

divisor of its coordinates is one. So, 𝒜(𝐶(𝐺)) = ℝ[𝑥𝑎]. For all 𝑖 = 1, … , 𝑚,  then 𝑔𝑖(𝑥) =

𝑔̂𝑖(𝑥𝑎), where 𝑔̂𝑖  is a single variable polynomial. The set [𝐺̂ ≤ 𝑠] ≔ {𝑡 ∈ ℝ|𝑔̂𝑖(𝑡) ≤ 𝑠𝑖 , 𝑖 =

1, … , 𝑚} is a subset of ℝ. 

Proposition 2. Assume that 𝐶(𝐺) = 𝐶(𝑎) is as above. Let k be a positive integer. Then the 

following statements are equivalent: 

(i). 𝐺 is 𝑘𝑎 −asymptotic. This means that there exist two positive real numbers 𝑐, 𝑀 such 

that 

𝑐|𝑥𝑘𝑎| ≤ max
1≤𝑖≤𝑚

𝑔𝑖(𝑥), ∀𝑥 ∈ ℝ2, ∥ 𝑥 ∥≥ 𝑀. 

(ii). There exists a positive real number 𝑐 such that the set 𝐺̂ = {𝑔̂1, … , 𝑔̂𝑚} satisfies 

𝑐|𝑡𝑘| ≤ max
1≤𝑖≤𝑚

𝑔̂𝑖(𝑡), ∀𝑡 ∈ ℝ.                            

Proof: 

It is straightforward that (𝑖) follows from (𝑖𝑖). 

Assume that (𝑖) holds, then the following 3 cases occur: 

Case 1: 𝑎 = (1,0). For every 𝑡 ∈ ℝ, we put 𝑥 = (𝑡, 𝑀). Then ∥ 𝑥 ∥≥ 𝑀 and 𝑡 = 𝑥𝑎 . By 

the definition of 𝑔̂𝑖 and the assumption (𝑖), we get: 

max
1≤𝑖≤𝑚

𝑔̂𝑖(𝑡) = max
1≤𝑖≤𝑚

𝑔𝑖(𝑥) ≥ 𝑐|𝑥𝑘𝑎| = 𝑐|𝑡𝑘|. 

Case 2: 𝑎 = (0,1). The proof of this case is similar to Case 1. 

Case 3: 𝑎 = (𝑎1, 𝑎2) ∈ (ℕ ∖ {0})2, where the greatest common divisor of 𝑎1 and 𝑎2 is one. 

We can assume that 𝑎1 is an odd number. If 𝑥 = (𝑡
1

𝑎1𝑀
−𝑎2
𝑎1 , 𝑀), then 𝑥𝑎 = 𝑡 and ∥ 𝑥 ∥≥ 𝑀. 

From the assumption (𝑖), we get (𝑖𝑖).                                                                                     □ 

Theorem 2. Let 𝑆 ≔ [𝐺 ≤ 𝑠] be a basic closed semi-algebraic set in ℝ2 defined as above, 

k be a positive integer and 𝑎 ∈ ℕ2 ∖ {(0,0)}. Assume that 𝐺 is ka-asymptotic, 𝐶(𝑎) = 𝐶(𝐺), 

and the set 𝑆̂ ≔ [𝐺̂ ≤ 𝑠] is defined as above. Then we have the following statements: 

(i). 𝑆̂ = [𝐺̂ ≤ 𝑠] is a compact set, 

(ii). For every polynomial 𝑓  bounded on 𝑆 = [𝐺 ≤ 𝑠] , there exists a single variable 

polynomial 𝑓 such that 𝑓(𝑥) = 𝑓(𝑥𝑎) and 
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𝑖𝑛𝑓
𝑆

𝑓 (𝑥) = 𝑖𝑛𝑓
𝑆̂

𝑓(𝑡) = 𝑓(𝑡∗) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡∗ ∈ 𝑆̂. 

To prove the above theorem, we use the following claim. 

Claim 1. For 𝑎 in ℕ2 ∖ {(0,0)} as in Theorem 2, consider the mapping 𝛷: ℝ2 ⟶ ℝ; 𝑥 ⟼

𝑥𝑎. Then 𝛷([𝐺 ≤ 𝑠]) = [𝐺̂ ≤ 𝑠]. 

Indeed, by 𝑔(𝑥) = 𝑔̂(𝑥𝑎) = 𝑔̂(Φ(𝑥)),  obviously Φ([𝐺 ≤ 𝑠]) ⊂ [𝐺̂ ≤ 𝑠].  If 𝑎 = (1,0), 

for every 𝑡 ∈ [𝐺̂ ≤ 𝑠],  we put 𝑥 = (𝑡, 1) . Then 𝑡 = 𝑥𝑎 = Φ(𝑥)  and 𝑥 ∈ [𝐺 ≤ 𝑠] . So 𝑡 ∈

 Φ([𝐺 ≤ 𝑠]).  If 𝑎 = (0,1),  for every 𝑡 ∈ [𝐺̂ ≤ 𝑠],  we put 𝑥 = (1, 𝑡) . Then 𝑥 ∈ [𝐺 ≤ 𝑠]  and 

𝑡 = 𝑥𝑎 = Φ(𝑥) ∈  Φ([𝐺 ≤ 𝑠]). If 𝑎 = (𝑎1, 𝑎2) ∈ (ℕ ∖ {0})2, we also assume that 𝑎1 is an odd 

number. For every 𝑡 ∈ [𝐺̂ ≤ 𝑠] , we take 𝑥 = (𝑡
1

𝑎1 , 1) , then 𝑡 = 𝑥𝑎 = Φ(𝑥) ∈  Φ([𝐺 ≤ 𝑠]). 

Hence [𝐺̂ ≤ 𝑠] ⊂ Φ([𝐺 ≤ 𝑠])𝑡 ∈ [𝐺̂ ≤ 𝑠]. 

Proof of Theorem 2: 

(i) Since G is 𝑘𝑎-asymptotic and C(𝑎) = C(G), applying Proposition 1, we see that the set 

B([G ≤ s]) of polynomials bounded on [G ≤ s] is equal to the set 𝒜(C(G)) of polynomials 

supported on 𝐶(𝐺). By 𝑎 ∈ C(a) = C(G), the polynomial 𝑥𝑎 is bounded on [G ≤ s]. It means 

that there exists 𝐿 > 0 such that |𝑥𝑎| ≤ 𝐿, ∀𝑥 ∈ [𝐺 ≤ 𝑠]. For every t ∈ [Ĝ ≤ s], by Claim 1, 

there exists y ∈ [G ≤ s] such that t = ya. So |𝑡| = |𝑦𝑎| ≤ 𝐿, ∀𝑡 ∈ [Ĝ ≤ s]. Therefore, [Ĝ ≤ s] 
is compact. 

(ii) According to Proposition 1, B([G ≤ s]) = 𝒜(C(G)) . Thus, for 𝑓  bounded on S =

[G ≤ s], there exists a single variable polynomial 𝑓  such that 𝑓(𝑥) = 𝑓(𝑥𝑎). Moreover, by 

Claim 1 and (i), we get  

𝑖𝑛𝑓
𝑥∈𝑆

𝑓 (𝑥) = 𝑖𝑛𝑓
𝑥∈𝑆

𝑓(Φ(𝑥)) = 𝑖𝑛𝑓
𝑡∈Φ(𝑆)

𝑓(t) = 𝑖𝑛𝑓
𝑡∈𝑆̂

𝑓(t) = 𝑓(𝑡∗) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡∗ ∈ 𝑆̂.          □ 

Example 1. Find the infimum of the polynomial 𝑓(𝑥1, 𝑥2) = 2𝑥1
5𝑥2

5 + 5𝑥1
2𝑥2

2 on the set 

                                              𝑆 = {(𝑥1, 𝑥2) ∈ ℝ2| 𝑥1
4𝑥2

4 + 𝑥1
2𝑥2

2 ≤ 2}. 

We have 𝑆 = [𝑔 ≤ 2],  where 𝑔(𝑥1, 𝑥2) = 𝑥1
4𝑥2

4 + 𝑥1
2𝑥2

2  is 2(1,1)-asymptotic and 

𝐶((1,1)) = 𝐶(𝑔).  The polynomials 𝑓(𝑡) = 2𝑡5 + 5𝑡2; 𝑔̂(𝑡) = 𝑡4 + 𝑡2  satisfy 𝑓(𝑥1, 𝑥2) =

𝑓(𝑥1𝑥2); 𝑔(𝑥1, 𝑥2) = 𝑔̂(𝑥1𝑥2). And the set 

𝑆̂ = [𝑔̂ ≤ 2] = {𝑡 ∈ ℝ| 𝑡4 + 𝑡2 ≤ 2} = {𝑡 ∈ ℝ| − 1 ≤ 𝑡 ≤ 1}, 

is a compact set in ℝ. By Theorem 2, we get 

inf
𝑆

𝑓 = inf
𝑆̂

𝑓 = 0 = 𝑓(0). 

3.2. The cone 𝑪(𝑮) is a two-dimensional cone 

In this subsection, we assume that 𝐶(𝐺) is a two-dimensional cone which means that there 

exist two linear independent vectors 𝑎, 𝑏 ∈ ℕ2\{(0,0)} such that 𝐶(𝐺) = 𝐶(𝑎, 𝑏). Note that 

both of the greatest common divisors of the corresponding coordinates of 𝑎 and 𝑏 are equal to 

one. If det[𝑎 𝑏] = 1 then 𝐶(𝑎, 𝑏) is unimodular and the problem of finding the infimum of a 

polynomial on [𝐺 ≤ 𝑠] is carried out as in [10]. Now, we assume det[𝑎 𝑏] = 𝑝 > 1. Then 

𝐻(𝐶(𝑎, 𝑏)) = {𝑡1𝑎 + 𝑡2𝑏| 0 ≤ 𝑡1, 𝑡2 ≤ 1 }\{𝑎 + 𝑏} has 𝑝 integer points, except two points 𝑎 
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and 𝑏 (An integer point is a point whose coordinate parts are integer). We have the following 

lemma. 

Lemma 2. If 𝑑𝑒𝑡[𝑎 𝑏] > 1 then there exists 𝑐 ∈ 𝐻(𝐶(𝑎, 𝑏)) ∩ ℕ2 such that 𝑑𝑒𝑡[𝑎 𝑐] = 1 

and 𝐶(𝑎, 𝑐) does not contain any integer points of 𝐻(𝐶(𝑎, 𝑏)), except three points 𝑎, 𝑐 and the 

origin 0. 

Proof. 

Using the property of a convex set and 𝑑𝑒𝑡[𝑎 𝑏] > 1, we can take an integer point 𝑐 ∈

𝐻(𝐶(𝑎, 𝑏)) ∩ ℕ𝑛  such that the convex cone 𝐶(𝑎, 𝑐) does not contain any integer points of  

𝐻(𝐶(𝑎, 𝑏)). So, the convex hull ∆(𝑎, 𝑐) ⊂ 𝐻(𝐶(𝑎, 𝑏)) of {0, 𝑎, 𝑐} (the smallest convex set 

containing {0, 𝑎, 𝑐}) does not have any integer points, except three points 𝑎, 𝑐 and the origin 0. 

We denote that convex hull by ∆(𝑎, 𝑐), then ∆(𝑎, 𝑐) = {𝑡1𝑎 + 𝑡2𝑐| 𝑡1, 𝑡2 ≥ 0, 𝑡1 + 𝑡2 ≤ 1}. If 

there is an integer point 𝑒 = 𝑡1𝑎 + 𝑡2𝑐 ∈ 𝐻(𝐶(𝑎, 𝑐))\{0, 𝑎, 𝑐}, where 0 < 𝑡1, 𝑡2 < 1, then the 

integer point 𝑎 + 𝑐 − 𝑒 = (1 − 𝑡1)𝑎 + (1 − 𝑡2)𝑐  belongs to ∆(𝑎, 𝑐)\{0, 𝑎, 𝑐}.  Hence, 

𝐻(𝐶(𝑎, 𝑐))\{0, 𝑎, 𝑐} does not contain any integer points. That is, det[𝑎 𝑐] = 1.                      □                   

Applying Lemma 1 and Lemma 2, there exists a finite set of distinct non-zero vector 

𝑎1, … , 𝑎𝑘  in 𝐻(𝐶(𝑎, 𝑏)) ∩ ℕ2  with 𝑎1 = 𝑎, 𝑎2 = 𝑐, 𝑎3 = 𝑏, det[𝑎1  𝑎2] = 1, 𝑎𝑖 ∉

𝐶(𝑎1, 𝑎2) ∀𝑖 ≥ 3, such that: 

𝒜(𝐶(𝐺)) = 𝒜(𝐶(𝑎, 𝑏)) = ℝ [𝑥𝑎1
, … , 𝑥𝑎𝑘

]. 

Put the matrix 𝐴 = [𝑎1  … 𝑎𝑘] -a matrix of size 2 × 𝑘, where every vector 𝑎𝑖 is a column of 𝐴. 

We denote (𝑥𝑎1
, … , 𝑥𝑎𝑘

) by 𝑥𝐴. We consider the mapping 

Φ(𝑜𝑟 ΦA): ℝ2 → ℝ𝑘, 𝑥 ↦ 𝑢 = Φ(𝑥) = 𝑥𝐴. 

A polynomial 𝑓 ∈ ℝ[𝑥] = ℝ[𝑥1, 𝑥2] belongs to ℝ[𝑥𝐴] = 𝒜(𝐶(𝐺)) if and only if there exists 

𝑓 ∈ ℝ[𝑢1, 𝑢2, … , 𝑢𝑘]  such that 𝑓(𝑥) = 𝑓(Φ(𝑥)) = 𝑓(𝑥𝐴).  So, for every 𝑔𝑖, 𝑖 = 1,2, … , 𝑚 , 

there exists 𝑔̂𝑖 ∈ ℝ[𝑢]  such that 𝑔𝑖(𝑥) = 𝑔̂𝑖(𝑥𝐴) . We put [𝐺̂ ≤ 𝑠] = {𝑢 ∈ ℝ𝑘| 𝑔̂𝑖(𝑢) ≤

𝑠𝑖, ∀𝑖 = 1,2, … , 𝑚 }. 

Since 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑘 ∈ 𝐻(𝐶(𝑎, 𝑏)) ∩ ℕ2 , 𝑎1 = 𝑎, det[𝑎1 𝑎2] = 1  and 𝑎𝑖 ∉ 𝐶(𝑎1, 𝑎2) ∀𝑖 ≥

3, there exist positive integers 𝑞𝑖1, 𝑞𝑖2 for 𝑖 = 3, 4, … , 𝑘 such that  

𝑎𝑖 = −𝑞𝑖1𝑎1 + 𝑞𝑖2𝑎2, 𝑖 = 3, 4, … , 𝑘.                                                                  (7) 

And, since 𝑎2, 𝑎4, 𝑎5, … , 𝑎𝑘 ∈ 𝐻(𝐶(𝑎, 𝑏)) ∩ ℕ2 = 𝐻(𝐶(𝑎1, 𝑎3)) ∩ ℕ2,  there exist positive 

integers 𝑝𝑗, 𝑝𝑗1, 𝑝𝑗2 for 𝑗 = 2,4, 5, … , 𝑘 such that 

𝑝𝑗𝑎𝑗 = 𝑝𝑗1𝑎 + 𝑝𝑗2𝑏 = 𝑝𝑗1𝑎1 + 𝑝𝑗2𝑎3, 𝑗 = 2,4,5, … , 𝑘.                                  (8) 

Note that we can choose 𝑝𝑗 , 𝑝𝑗1, 𝑝𝑗3 such that the greatest common divisor of every set 

{𝑝𝑗, 𝑝𝑗1, 𝑝𝑗3} equals one. 

For all 𝑥 ∈ ℝ2, by (7) and (8), if 𝑢 = 𝑥𝐴 ⇔ 𝑢𝑖 = 𝑥𝑎𝑖
, then 𝑢 satisfies the following equations: 

𝑢𝑖𝑢1
𝑞𝑖1 = 𝑢2

𝑞𝑖2 , 𝑖 = 3, 4, … , 𝑘;                                                                                    (9) 

𝑢
𝑗

𝑝𝑗 = 𝑢1

𝑝𝑗1𝑢3

𝑝𝑗2 ,      𝑗 = 2,4,5, … , 𝑘.                                                                                 (10) 



Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2093-2103 

2100 

For positive integers 𝑞𝑖1, 𝑞𝑖2;  𝑝𝑗 , 𝑝𝑗1, 𝑝𝑗3 above, we put  

Ω ≔ {𝑢 ∈ ℝ𝑘 | 𝑢𝑖𝑢1
𝑞𝑖1 = 𝑢2

𝑞𝑖2 , 𝑖 = 3, … , 𝑘; 𝑢
𝑗

𝑝𝑗 = 𝑢1

𝑝𝑗1𝑢3

𝑝𝑗2 , 𝑗 = 2,4,5, … , 𝑘}.       (11) 

That is, Ω is a semi-algebraic set and is the solution set of the system of equations (9) and (10). 

Lemma 3. Let the set [𝐺 ≤ 𝑠] and the mapping 𝛷 be defined as above. Then: 

(i) 𝛷(ℝ2) ⊂ 𝛺;  𝛷((ℝ∗)2) = 𝛺 ∩ (ℝ∗)𝑘, where ℝ∗ = ℝ ∖ {0}  

(ii)  𝛷(ℝ2) = 𝛺. 

Proof:    

(i) By the equations (7) and (8), if 𝑥 ∈ ℝ2 then 𝑢 = Φ(𝑥) = 𝑥𝐴 satisfy the equations (9) 

and (10), so 𝑥 ∈ Ω. 

Obviously, Φ((ℝ∗)2) ⊂ 𝛺 ∩ (ℝ∗)𝑘 . For the reverse inclusion, take 𝑢 = (𝑢1, … , 𝑢𝑘) ∈
𝛺 ∩ (ℝ∗)𝑘 and put the square matrix 𝐵 = [𝑎1 𝑎2]. By det 𝐵 = 1, there exists the inverse matrix 

𝐵−1  of integer entries. Put 𝑥 = (𝑥1, 𝑥2) = (𝑢1, 𝑢2)𝐵−1
∈ (ℝ∗)2 , then (𝑢1, 𝑢2) = 𝑥𝐵 =

(𝑥𝑎1
, 𝑥𝑎2

). From the equalities (7) and (9), we have 

                                    𝑢𝑖 = 𝑢1
−𝑞𝑖1𝑢2

𝑞𝑖2 = 𝑥−𝑞𝑖1𝑎1+𝑞𝑖2𝑎2
= 𝑥𝑎𝑖, 𝑖 = 3, 4, … , 𝑘.  

So 𝑢 = 𝑥𝐴 = Φ(𝑥) ∈  Φ((ℝ∗)2). Hence, Φ((ℝ∗)2) = Ω ∩ (ℝ∗)k. 

(ii)  Clearly, Φ(ℝ2) ⊂ Ω. Conversely, to prove that Ω ⊂ Φ(ℝ2), by (i), we only need to 

show that if 𝑢 ∈ Ω ∖ (ℝ∗)𝑘 then 𝑢 ∈ Φ(ℝ2). The following cases occur: 

Case 1: 𝑢 = (0,0, … ,0) ∈ Ω ∖ (ℝ∗)𝑘. We have 𝑢 = (0,0)𝐴 = Φ(0,0). So 𝑢 ∈ Φ(ℝ2). 

Case 2: 𝑢 = (𝑢1, 0,0, … ,0) ∈  Ω ∖ (ℝ∗)𝑘; 𝑢1 ≠ 0.  For every real number 𝑡 ≠ 0,  we can 

determine 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑘(𝑡)) ∈ (ℝ∗)𝑘,  where 𝑢1(𝑡) = 𝑢1, 𝑢2(𝑡) = 𝑡,  𝑢𝑖(𝑡) =

𝑢1
−𝑞𝑖1𝑡𝑞𝑖2 for all 𝑖 = 3,4, … , 𝑘. We see that 𝑢(𝑡) satisfy the equations in (9). In a similar way as 

in the proof (i), it follows that there exists 𝑥(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡))
𝐵−1

∈ (ℝ∗)2, then Φ(𝑥(𝑡)) =

𝑢(𝑡). So, 𝑢(𝑡) is a solution of the system of equations (10) for all 𝑡 ≠ 0. Therefore, 𝑢(𝑡) ∈ Ω ∩

(ℝ∗)𝑘. Moreover, Φ(𝑥(𝑡)) = 𝑢(𝑡) → 𝑢 as 𝑡 → 0. So, 𝑢 = (𝑢1, 0,0, … ,0) ∈ Φ(ℝ2). 

Case 3: 𝑢 = (0,0, 𝑢3, 0, … ,0) ∈  Ω ∖ (ℝ∗)𝑘; 𝑢3 ≠ 0. Since 𝑎3 = −𝑞31𝑎1 + 𝑞32𝑎2 in (7), if 

𝑞32  is an even number then 𝑞31  is an odd number because the corresponding coordinate 

components of each 𝑎1, 𝑎2 and 𝑎3 all have at least one odd number (by the greatest common 

divisor of the coordinate components of each 𝑎𝑖  equals 1). So, for every 𝑡 ≠ 0,   we can 

put  𝑢1̅̅ ̅(𝑡) = 𝑢3𝑡2  and  𝑢2̅̅ ̅(𝑡) = (𝑢3
𝑞31+1

𝑡2𝑞31)
1

𝑞32⁄  .  By 𝑢1̅̅ ̅(𝑡) ≠ 0, 𝑢2̅̅ ̅(𝑡) ≠ 0,  we can 

determine 𝑥(𝑡) = (𝑢1̅̅ ̅(𝑡), 𝑢2̅̅ ̅(𝑡))
𝐵−1

.  Then 𝑥(𝑡)  is in (ℝ∗)2  and  𝑢1̅̅ ̅(𝑡) = 𝑥(𝑡)𝑎1
, 𝑢2̅̅ ̅(𝑡) =

𝑥(𝑡)𝑎2
. Putting 𝑢(𝑡) = Φ(𝑥(𝑡)), it is obvious that 𝑢(𝑡) ∈ Ω. According to the definitions of Φ 

and 𝑥(𝑡),  we get 𝑢1(𝑡) = 𝑥(𝑡)𝑎1
= 𝑢3𝑡2, 𝑢2(𝑡) = 𝑥(𝑡)𝑎2

= (𝑢3
𝑞31+1

𝑡2𝑞31)
1

𝑞32⁄  , 𝑢𝑖(𝑡) =

𝑥(𝑡)𝑎𝑖
 ∀𝑖 = 1, … , 𝑘. We show that 𝑢(𝑡) → (0,0, 𝑢3, 0, … ,0) as 𝑡 → 0. Indeed, clearly 𝑢1(𝑡) →

0, 𝑢2(𝑡) → 0.  Since the coordinates of 𝑢(𝑡)  satisfy the equations (9), we have 𝑢3(𝑡) =
𝑢1(𝑡)−𝑞31𝑢2(𝑡)𝑞32 = 𝑢3. Since the coordinates of 𝑢(𝑡) satisfy the equations (10), we obtain 
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𝑢𝑗(𝑡)𝑝𝑗 = 𝑢1(𝑡)𝑝𝑗1𝑢3(𝑡)𝑝𝑗2 = 𝑢3

𝑝𝑗1+𝑝𝑗2𝑡2𝑝𝑗1 → 0 for all 𝑗 = 3,4, … , 𝑘. So 𝑢𝑗(𝑡) → 0 as 𝑡 → 0 

for all 𝑗 = 3,4, … , 𝑘. Therefore, Φ(𝑥(𝑡)) = 𝑢(𝑡) → (0,0, 𝑢3, 0, … ,0).  

Case 4: 0 ≠ 𝑢 ∈ Ω ∖ (ℝ∗)𝑘. Then there exists 𝑢𝑖 = 0 for some 𝑖. If 𝑖 = 1 (𝑖. 𝑒. , 𝑢1 = 0), 

then 𝑢𝑗 = 0 ∀𝑗 ≠ 1, 3  (by Equations (10)) and 𝑢3 ≠ 0.  By Case 3, 𝑢 ∈ Φ(ℝ2).  If 𝑖 =

3 (𝑖. 𝑒. , 𝑢3 = 0), then 𝑢𝑗 = 0, ∀𝑗 ≠ 1, 3 (by Equation (10)) and 𝑢1 ≠ 0. By Case 1, 𝑢 ∈ Φ(ℝ2). 

If 𝑖 ≠ 1  and 𝑖 ≠ 3  (𝑖. 𝑒. ∃ 𝑖 ≠ 1, 𝑖 ≠ 3, 𝑢𝑖 = 0),  then 𝑢1 = 0  or 𝑢3 = 0  (by Equation (10)). 

According to the Case 2 or Case 3, 𝑢 belongs to Φ(ℝ2).                                                                                          

Theorem 3. Let 𝑆 ≔ [𝐺 ≤ 𝑠]  be a basic closed semi-algebraic set in ℝ2, 𝐶(𝐺) =

𝐶(𝑎, 𝑏), the matrix 𝐴, the mapping Φ, the set Ω, the set 𝑆̂ ≔ [𝐺̂ ≤ 𝑠] all defined as in this 

subsection. Let 𝑘1, 𝑘2 be positive integers. Assume that 𝐺 is {𝑘1𝑎, 𝑘2𝑏}-asymptotic and 0 is not 

a local minimal value of the function ℎ(𝑢) = max
1≤𝑖≤𝑚

(𝑔̂𝑖(𝑢) − 𝑠𝑖) on Ω. Then 

(i)  𝑆̂ ∩ Ω = Φ(𝑆), 𝑤ℎ𝑒𝑟𝑒 Φ(𝑆) is the closure of the set Φ(𝑆).  

(ii) 𝑆̂ ∩ Ω is a compact set. 

(iii) For every polynomial 𝑓 bounded on 𝑆 = [𝐺 ≤ 𝑠], there exists a polynomial 𝑓 such 

that 𝑓(𝑥) = 𝑓(𝑥𝐴) and 

𝑖𝑛𝑓
𝑆

𝑓 (𝑥) = 𝑖𝑛𝑓
𝑆̂∩Ω

𝑓(𝑡) = 𝑓(𝑢∗) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑢∗ ∈ 𝑆̂ ∩ Ω. 

Proof. 

(i) We always have Φ(𝑆) ⊂ 𝑆̂ ∩ Ω.  

Now, we prove that 𝑆̂ ∩ Ω is contained in Φ(𝑆). Take arbitrarily 𝑢0 ∈ 𝑆̂ ∩ Ω. By 𝑢0 ∈ Ω 

and Lemma 3, there exists a sequence {𝑢𝑛}𝑛∈ℕ ⊂ Φ(ℝ2) such that 𝑢𝑛 → 𝑢0 as 𝑛 → ∞. That is, 

there exists {𝑥𝑛}𝑛∈ℕ ⊂ ℝ2  such that 𝑢𝑛 = Φ(𝑥𝑛) → 𝑢0  as 𝑛 → ∞.  By 𝑢0 ∈ 𝑆̂,  we have 

ℎ(𝑢0) ≤ 0. We consider 2 cases: 

Case 1: ℎ(𝑢0) < 0. Since ℎ is continuous, there exists an open ball ℬ(𝑢0, 𝜖) centered at 𝑢0 

with radius 𝜖 > 0  such that ℎ(𝑢) < 0  for all 𝑢 ∈ ℬ(𝑢0, 𝜖).  Since 𝑢𝑛 → 𝑢0 , there exists an 

integer number 0 < 𝑁 ∈ ℕ  such that 𝑢𝑛 ∈ ℬ(𝑢0, 𝜖)  for all 𝑛 ≥ 𝑁 . So ℎ(𝑢𝑛) < 0 . That 

means,  𝑔̂𝑖(𝑢𝑛) < 𝑠𝑖 for all 𝑖 = 1,2, … , 𝑚 and 𝑛 ≥ 𝑁. Furthermore, for all 𝑛 ≥ 𝑁, we have: 

𝑔𝑖(𝑥𝑛) = 𝑔̂𝑖(Φ(𝑥𝑛)) = 𝑔̂𝑖(𝑢𝑛) ≤ 𝑠𝑖 ∀𝑖 = 1,2, … , 𝑚. 

Hence, 𝑢𝑛 ∈ Φ(𝑆) ∀𝑛 ≥ 𝑁 and 𝑢𝑛 → 𝑢0 as 𝑛 → ∞. So 𝑢0 ∈ Φ(𝑆). 

Case 2: ℎ(𝑢0) = 0. Assume that 𝑢0 ∉ Φ(𝑆), there exists an open ball ℬ(𝑢0, 𝜖) centered at 

𝑢0  with radius 𝜖 > 0 such that ℬ(𝑢0, 𝜖) ∩ Φ(𝑆) = ∅. By Case 1, ℎ(𝑢) ≥ 0 = ℎ(𝑢0) for all 

𝑢 ∈ ℬ(𝑢0, 𝜖) ∩ Ω.  That is, 0 is a local minimal value of ℎ  on Ω,  which contradicts the 

hypothesis. So, 𝑢0 ∈ Φ(𝑆). 

 (ii) By 𝐺  is {𝑘1𝑎, 𝑘2𝑏} -asymptotic, 𝐶(𝑘1𝑎, 𝑘2𝑏) = 𝐶(𝑎, 𝑏) = 𝐶(𝐺)  and Proposition 1, 

𝐵([𝐺 ≤ 𝑠]) = 𝒜(𝐶(𝐺)) = ℝ[𝑥𝐴] = ℝ [ 𝑥𝑎1
, … , 𝑥𝑎𝑘

]. So, every monomial 𝑥𝑎𝑖
 is bounded on 

[𝐺 ≤ 𝑠] for all 𝑖 = 1,2, … , 𝑘. There exists 𝑀𝑖 > 0 such that |𝑥𝑎𝑖
| ≤ 𝑀𝑖 for all 𝑥 ∈ 𝑆 = [𝐺 ≤ 𝑠] 
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and 𝑖 = 1, 2, … , 𝑘. Take arbitrarily 𝑢 = (𝑢1, … , 𝑢𝑘) ∈ 𝑆̂ ∩ Ω. By 𝑆̂ ∩ Ω = Φ(𝑆) (follows (i)), 

there exists a sequence {𝑥𝑛} ⊂ 𝑆  such that Φ(𝑥𝑛) → 𝑢  as 𝑛 → ∞ , that means (𝑥𝑛)𝑎𝑖
→

𝑢𝑖 , ∀𝑖 = 1,2, … , 𝑘. According to the above argument, |(𝑥𝑛)𝑎𝑖
| ≤ 𝑀𝑖 , ∀𝑖 = 1,2, … , 𝑘. So |𝑢𝑖| ≤

𝑀𝑖 , ∀𝑖 = 1,2, … , 𝑘. Hence, 𝑆̂ ∩ Ω is compact. 

(iii) By 𝑓 ∈ 𝐵([𝐺 ≤ 𝑠]) and 𝐵([𝐺 ≤ 𝑠]) = 𝒜(𝐶(𝐺)) (apply Proposition 1), there exists 

𝑓 ∈ ℝ[𝑢] such that 𝑓(𝑥) = 𝑓(𝑥𝐴). Since (i) and (ii) we have 

𝑓∗ = 𝑖𝑛𝑓
𝑆

𝑓 (𝑥) = 𝑖𝑛𝑓
Φ(𝑆)

𝑓(𝑢) = 𝑖𝑛𝑓
𝑆̂∩Ω

𝑓(𝑢) = 𝑓(𝑢∗) for some 𝑢∗ ∈ 𝑆̂ ∩ Ω.                       □ 

Note that, in Theorem 3 , 𝑓 attains its minimum value on 𝑆̂ ∩ Ω, but 𝑓 may not attain its 

minimum value on S. 

Example 2. Find the infimum of 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) = 𝑥1
4𝑥2

4 − 𝑥1
4𝑥2

8  on the set 𝑆 =
[𝐺 ≤ 1] = {𝑥1

2 ≤ 1, 𝑥1
4𝑥2

8 ≤ 1}. 

We have that 𝐺 = {𝑥1
2, 𝑥1

4𝑥2
8} is {2(1,0), 4(1,2)}-asymptotic, 𝐶(𝐺) equals 𝐶((1,0), (1,2)). 

So 𝐵([𝐺 ≤ 𝑠]) is the same 𝒜(𝐶(𝐺)) = ℝ[𝑥1, 𝑥1𝑥2, 𝑥1𝑥2
2]. Put the matrix 𝐴 = [

1 1 1
0 1 2

], the 

mapping Φ: ℝ2 → ℝ3, Φ(𝑥) = 𝑥𝐴 = (𝑥1, 𝑥1𝑥2, 𝑥1𝑥2
2).  Put 𝑓(𝑢) = 𝑓(𝑢1, 𝑢2, 𝑢3) = 𝑢2

4 − 𝑢3
4 

then 𝑓(𝑥) = 𝑓(𝑥𝐴). Put [𝐺̂ ≤ 1] ∩ Ω = {𝑢 ∈ ℝ3| 𝑢1
2 ≤ 1, 𝑢3

4 ≤ 1, 𝑢2
2 = 𝑢1𝑢3} = {−1 ≤ 𝑢1 ≤

1, −1 ≤ 𝑢3 ≤ 1, 𝑢2
2 = 𝑢1𝑢3},  then [𝐺̂ ≤ 1] ∩ Ω  is compact in ℝ3.  It is easy to check that 

Φ([𝐺 ≤ 1]) = [𝐺̂ ≤ 1] ∩ Ω. By Theorem 3, we get 

inf
[𝐺≤1]

𝑓 = min
[𝐺̂≤1]∩Ω 

  𝑓 = −1 = 𝑓(0,0,1). 

However, 𝑓 does not attain its minimum on [𝐺 ≤ 1]. 

4. CONCLUSION 

In this paper, we have studied the problem of minimizing a polynomial 𝑓 ∈ ℝ[𝑥] on non-

compact semi-algebraic set [𝐺 ≤ 𝑠] when the family of polynomials 𝐺 is asymptotic with a 

family of monomials {𝑥𝑎| 𝑎 ∈ 𝑈} and 𝑈 ⊂ ℕ𝑛 generates the convex cone 𝐶(𝐺). At this time, 

the algebra 𝐵([𝐺 ≤ 𝑠]) of polynomials bounded on [𝐺 ≤ 𝑠] equals the algebra 𝒜(𝐶(𝐺)) of all 

polynomials with supports in the convex cone C(G). Under certain suitable conditions and by 

making changes of variables, the problem becomes the problem of minimizing the 

polynomial 𝑓 on compact semi-algebraic set [𝐺̂ ≤ 𝑠]. In the general case of 𝑛 variables, the 

problem was solved provided that 𝐶(𝐺) is an unimodular cone. In the case of two variables, we 

have solved the problem without requiring 𝐶(𝐺) to be unimodular. 
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