
Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2070

Transport and Communications Science Journal

BUILDING AN IMAGE PROCESSING PROGRAM FOR THE

VEHICLE FIRE CONTROL SYSTEM

Xuan Tung Vu

Weapons Institute, Vietnam Defence Industry, 51, Phu Dien, Phu Dien, Bac Tu Liem, Hanoi,

Viet Nam

ARTICLE INFO

TYPE: Research Article

Received: 15/05/2024

Revised: 11/06/2024

Accepted: 14/06/2024

Published online: 15/09/2024

https://doi.org/10.47869/tcsj.75.7.5
* Corresponding author

Email: vuxuantung0511@gmail.com

Abstract. In the world, the integration of controlled weapons into combat vehicles has been

done for a long time and many weapon manufacturers have utilized image processing

software to enhance the combat effectiveness of weapon systems, resulting in positive

outcomes. Fire control systems, especially fire control systems on vehicles, require

requirements for processing speed, durability as well as flexibility, which are essential when

fighting the enemy. Kernelized Correlation Filters image processing algorithms and Temple

Matching algorithms have promoted the advantages of image processing with vehicle fire

control system in the weapons field. In this article, from the analysis of the Kernelized

Correlation Filters image processing algorithm and the Temple Matching algorithm on

hardware platforms suitable for vehicle fire control systems, the authors built a software

program based on taking advantage of the powerful parallel computing capabilities of GPUs

applied to 12.7 mm gun fire control systems installed on vehicles. The experiments

demonstrated the results of handling targets in the field after completely installing all

components of the weapon complex on the vehicle.

Keywords: Board Jetson AI, Orange Pi 5, Kernelized Correlation Filters, Temple Matching,

Linear Correlation Filter.

@ 2024 University of Transport and Communications

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2071

1. INTRODUCTION

For real-time image processing problems, it is common to use an Intel Core I CPU or an

AMD Ryzen CPU that has enough computing power. However, this option is not suitable

when installed on a vehicle because these platforms consume a lot of energy, have difficulty

dissipating heat, and require a lot of space to install [1]. Currently, hardware devices for

mobile systems mainly use ARM CPUs, which have many advantages such as low energy

consumption, improved processing speed, compactness, resistance to impact, and low heat

emission when operating. Moreover, they have a widespread application development

community, are easy to purchase, have many support tools, and are highly inheritable [1], [2].

NVIDIA's Jetson AI board [3] is often chosen to perform image processing problems on

mobile or outdoor systems [3,4], and in particular, the Orange Pi 5 Plus Board uses OpenCL

technology for parallel processing. Although it is not as convenient and powerful as CUDA

technology on the Jetson board, it has the advantage of generating less heat [3].

Image processing algorithms in vehicle fire control systems can be mentioned as follows:

(1) Temple Matching algorithm [5, 6] is a technique for finding regions of matching images

(similar) to sample image (patch); (2) The KCF (Kernelized Correlation Filters) image object

tracking algorithm [7] works according to the following general principle: the object to be

tracked is usually selected by a rectangular bounding box.

In terms of weapons systems, the installation of controlled weapon systems on combat

vehicles is much more difficult because the space is small and difficult to install, and

providing enough stable energy for the electrical system to operate is difficult. Because the

space in the car is tight and cramped, finding a heat dissipation solution for electronic

components is not simple. The vehicle's operating conditions include vibrations and exposure

to sunlight and rain, so ensuring the system is stable and accurate is not easy.

In this paper, the authors propose a solution to build an image processing program

(according to Temple Matching and KCF algorithms) for the vehicle's fire control system.

The computer that integrates this program must be compact, impact-resistant, and have little

heat loss, but must still have enough computing power to process camera images in real-time.

Recent studies have shown significant advancements in GPU-based image processing for

real-time applications. For instance, in publication [8], the authors demonstrated the use of

heterogeneous computing and edge computing to accelerate anomaly detection in

multispectral images, highlighting the efficiency of GPU-based solutions in processing large

datasets. Similarly, in publication [9] and [10], the authors explored fast 2D and 3D image

processing with OpenCL, emphasizing the potential of GPU acceleration in various imaging

tasks. These advancements provide a broader context for the current research, underscoring

the viability of GPU-based image processing in embedded systems.

2. RELATED WORKS

2.1. Selecting image processing algorithms in building image processing applications on

fire control computers

Figure 1 presents the details of the image processing algorithm flow chart, in which the

central part of this flow chart is the image processing algorithm that is parallelised on the

cores of the video card on the embedded board. Here, the authors integrate two image

processing algorithms for experimental evaluation: Temple Matching and KCF. Each

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2072

algorithm has different advantages and disadvantages, suitable for each different testing

situation, so we decided to put both options on the central control software.

Deploy simultaneous target search on

small blocks of data using cores on the

video card because image processing

algorithms are preloaded on the cores.

Start

Report the coordinates and size of the

image area containing the target

Report there is no

target on the frame

Collect video data from cache

Send video data to the video card,

dividing the data into small blocks

corresponding to sub-areas in the large

frame

Send the processing results on each data

area to the central ARM CPU, from this

set of results we select the image area with

the highest evaluation value similar to the

sample target.

Compare the

maximum similarity

assessment value

obtained above with

the given threshold

If smaller

If larger

Figure 1. The flow chart of image processing algorithm.

1) Temple Matching image processing algorithm [5]: is a technique for finding regions

of an image that match (similar) to a sample image (patch), in other words, fitting a puzzle

piece to the actual image by "sliding" that puzzle piece onto the input image (like 2D

convolution) and compare samples and fragments based on some normalisation (Table 1). It

returns a grayscale image, where each pixel represents how well its neighbors match the

sample.

Operating principle: If the input image has size (WxH) and the sample image has size

(wxh), the output image will have size (W-w+1,H-h+1). After receiving the result, the

minMaxLoc() function is used to find where the maximum/minimum value is. This value it

taken as the top left corner of the rectangle and (w,h) is taken as the width and height of the

rectangle. That rectangle will be the sample area to search. Extracting and finding the

maximum/minimum value is performed based on the correlation value functions and

corresponding mathematical formulas in Table 1.

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2073

Table 1. Details of correlation value functions used in the Temple Matching algorithm.

Function Formula

TIM_SQDDIFF

TIM_SQDDIFF_NORMED

TM_CCORR

TM_CCORR_NORMED R(x,y)

TM_CCOEFF

TM_CCOEFF_NORMED R(x,y)

In this paper, each segmented image region will generate a value by one of the above list

of Temple Matching functions and this process is calculated in a core of the video card. The

advantage of this process in the Temple Matching algorithm is that it can use multiple

Graphics Cards. The more cores the card has, the greater the number of Temple Matching

functions that are calculated simultaneously, and thus it will save processing time in one cycle

of collecting an image frame.

2) KCF image processing algorithm [7]: The basic idea of correlated filter tracking is to

estimate an optimal image filter such that filtering with the input image produces the desired

response. The desired response typically has a Gaussian shape centered on the target location,

so that the score decreases with distance. The filter is trained from translated (shifted)

versions of the target patch. On testing, the filter response is evaluated and the maximum

gives the new position of the target. The filter is trained online and continuously updated with

every frame so that the tracker adapts to moderately sized target changes. The main advantage

of the correlation filter tracker is computational efficiency. The reason is that the calculation

can be performed efficiently in the Fourier domain. Therefore, the tracker runs in super real-

time, several hundred FPS. There are both linear and non-linear (Kernel) versions of the

tracker derived from Henriques' uniform least squares principle. The operation of this KCF

image processing algorithm is mainly shown in the following modules: (1) Linear Correlation

Filter; (2) Kernelized Correlation Filter.

(1) Module 1 (Linear Correlation Filter):

The optimal linear filter w is found by solving the least squares problem after

normalization:

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2074

 (1)

Where, X is the cyclic matrix of the input image. The rows of X store all possible cyclic

image shifts, y is the sample target image, λ is the regularizer weights. Then, the equation of

(1) is rewritten as following:

w = (2)

Since X is a cyclic matrix, w in (2) can be quickly calculated by operations in the Fourier

domain

 (3)

In which, “^” is the complex Fourier value; “ ” represents multiplication by components;

Furthermore, the filter response on the test image is not calculated using a sliding window

but can be done more efficiently by the following method

 (4)

In the LCF linear correlation filter, the filter has the disadvantage of accuracy, which will

not be as high as the kernel correlation filter because this filter is represented in a nonlinear

form, so it characterizes the object better. In this paper, to overcome this drawback, the

authors took advantage of the LCF linear correlation filter's advantage of being fast to

calculate because the filter is represented in linear form. This helps improve the performance

of the KCF image processing algorithm.

(2) Module 2 (Kernelized Correlation Filter):

The “kernel-trick” is used by mapping the input data to a non-linear functionx−>φ(x) and

representing the solution as a linear combination . Then, the algorithm

needs to find

 (5)

In which, matrix K is the kernel matrix with convolutional elements .

Therefore, the original problem becomes non-linear. The method to find the result for

equation (5) is understood as:

 (6)

It can be effectively calculated by

 (7)

and with fast detection response

 = (8)

Then, by substitution into (7) and (8), We will obtain the results of

the linear correlation tracker (3) and (4)

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2075

The KCF correlation filter has the disadvantage that the calculation time is more than the

linear correlation filter because the representation function is more complicated. This is a

weakness that reduces the execution efficiency of the KCF algorithm. In this article, the

authors have overcome it by using functions (7) and (8) to produce more accurate results than

the linear correlation filter, this is shown in equation (3) and (4).

(3) Detailed Implementation of Algorithms:

KCF Algorithm:

The KCF algorithm estimates an optimal image filter such that filtering with the input

image produces the desired response. The filter is trained online and continuously updated

with each frame, ensuring the tracker adapts to moderate changes in the target. The

implementation involves the following steps:

 Initialization: The target is selected using a rectangular bounding box.

 Training: The filter is trained from translated versions of the target patch using

the least squares method.

 Detection: The filter response is evaluated, and the maximum response gives the

new position of the target.

Temple Matching Algorithm:

The Temple Matching algorithm finds regions of an image that match a sample image by

sliding the sample over the input image and comparing regions based on normalization. The

implementation involves:

 Input Preparation: The input image and sample image are prepared.

 Matching: The sample image is slid over the input image, and correlation value

functions (e.g., TIM_SQDDIFF, TM_CCORR) are used to find

matching regions.

 Result Extraction: The minMaxLoc() function identifies the top left corner of the

matching region, and the sample area is defined based on this

location.

2.2. Selecting image processing hardware solution for fire control computer

With the disadvantage of computing power, it cannot be compared to Intel Core I CPU

systems or AMD Ryzen CPU systems, although they are continuously improved each year by

increasing clock speeds, increasing cache capacity and adding more cores ARM [1]. If we

only take advantage of the power of ARM CPUs, we cannot ensure that the image processing

problem of the fire control computer can operate in real time. With the advent of ARM CPU

systems, NVIDIA's CUDA tool and OpenCL ([2], [8], [9], [10]), the ability to integrate on

mobile embedded boards using ARM CPUs has become helps solve image processing

problems. The GPU (Graphic Process Unit) graphics processing chip is essentially a

combination of many single processing cores (the number can range from 128 to 2048 units).

Each core is a separate CPU whose processing speed can range from 600 Mhz to GHz.

Although each GPU core also has its own amount of resources such as cache and RAM, it

cannot compare in terms of processing power of each ARM core of the CPU (clocking up to >

2Ghz). Because the number of GPU cores is very large, the total amount of computation the

GPU can handle is much larger than the total amount of computation that the ARM CPU

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2076

cores can produce. Therefore, theoretically if we could share the computation part of the

program Image processing for GPUs while ARM cores only play the role of data coordination

and peripheral communication, the program can completely operate in real time

Currently, with the support of NVIDIA's Jetson AI board [4], it helps to perform image

processing problems on mobile or outdoor systems more conveniently. This board has many

advantages such as powerful hardware resources, receiving a lot of support from NVIDIA and

a large development community, so application development has many advantages. Besides

the advantages, there are many disadvantages such as high cost and high heat dissipation, so

dissipating heat for them is difficult, especially in cramped environments. Furthermore, it will

be quite difficult to buy large quantities of high-end boards, so there are many shortcomings

when applying on the vehicles.

In this paper, to solve the problem of image processing on a fire control computer, the

authors used Jetson boards to test and evaluate the algorithm to save time. Then, to overcome

the disadvantages of the algorithm operating on the Jetson board, the authors chose an

alternative solution using the Orange Pi 5 Plus board. This board uses OpenCL technology for

parallel processing. Although it is not as convenient and powerful as CUDA technology on

the Jetson board (but still meets the requirements of real-time image processing), it radiates

less heat and is more affordable and easier to buy in larger quantities than the Jetson Board at

the same level of processing capacity.

2.3. Experimental setup and hardware configuration

The experiments were conducted using two different hardware platforms: Nvidia Jetson

Orin NX and Orange Pi 5. The Nvidia Jetson Orin NX features a powerful GPU with 1024

CUDA cores and an ARM Cortex-A78AE CPU, while the Orange Pi 5 uses an ARM Cortex-

A55 CPU and supports OpenCL for parallel processing. Both platforms were equipped with

8GB of RAM. The image processing program was tested under real-world conditions,

including target detection and tracking in outdoor environments. The targets included a UAV

drone and a mobile shooting target. The performance of the algorithms was evaluated based

on processing time and target accuracy.

3. RESULTS AND DISCUSSION

Both KCF and Temple matching algorithms are performed in real time which means the

target detection process is performed while waiting for the next image frame to be collected.

Two tables are presenting the evaluation of the processing performance of the two algorithms

on different hardware platforms. We used algorithm evaluations on outdoor scenes to increase

realism when used in practice. Here, the assessment of catching a UAV drone and tracking a

moving target as a shooting target on the field will be conducted (Figure 2).

Figure 2 shows the results in the situation of detecting and tracking Drone targets using

the KCF algorithm on two hardware platforms Orange Pi 5 and Nvidia Jetson Orin NX. This

target-tracking imaging program system is installed and controls firepower on the vehicle. To

evaluate the quality and performance of the program during targeted combat, the authors

conducted experiments to evaluate the effectiveness of the program in different areas and

terrains.

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2077

Figure 2. Results of displaying Drone tracking using KCF algorithm on two hardware platforms

Orange Pi 5 and Nvidia Jetson Orin NX.

Table 2. Compare the performance of two algorithms on the Nvidia Jetson Orin NX platform.

N0

KCF algorithm Temple Matching algorithm

Input

sample

Processing

time (ms)

Target accuracy

(Pixel, Pixel) in

two axes (x, y)

Input

sample

Processing

time (s)

Target accuracy

(Pixel, Pixel) in

two axes (x, y)

1 Drone 5.1 (0,1) Drone 4.1 (0,0)

2 Drone 5.2 (1,0) Drone 4.2 (0,0)

3 Drone 5.0 (1,1) Drone 4.3 (0,0)

4 Drone 5.2 (1,1) Drone 4.1 (0,0)

5 Drone 5.3 (1,1) Drone 4.3 (0,0)

6 Target 5.2 (1,0) Target 4.1 (1,0)

7 Target 5.1 (1,0) Target 4.1 (1,0)

8 Target 5.0 (1,1) Target 4.2 (0,0)

9 Target 5.3 (1,1) Target 4.25 (0,0)

10 Target 5.2 (0,1) Target 4.3 (0,1)

The standard for evaluating a well-functioning image processing program is that the

target image does not lose focus during its existence on the screen and that the center of the

target frame does not fluctuate when the target is stationary (to apply the problem of aiming

and shooting). In particular, the authors installed both the KFC algorithm and the Temple

Matching algorithm on two hardware platforms, Orange Pi 5 and Nvidia Jetson Orin NX, to

evaluate the processing quality of the program.

Table 2 shows detailed performance results of the KCF algorithm and the Temple

Matching algorithm on the Nvidia Jetson Orin NX platform when the image processing

program for the fire control system is deployed. The results show that the image processing

program on the author's vehicle fire control system operates well and stably. For the KCF

algorithm, the target tracking time is about 5.0 (ms) to 5.3 (ms) with high accuracy. For the

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2078

Temple Matching algorithm, the target tracking time is about 4.1(s) to 4.3(s) with high

accuracy.

Table 3. Compare the performance of two algorithms on the Orange Pi 5 platform.

N0

KCF algorithm Temple Matching algorithm

Input

sample

Processing

time (ms)

Target accuracy

(Pixel, Pixel) in

two axes (x, y)

Input

sample

Processing

time (s)

Target accuracy

(Pixel, Pixel) in

two axes (x, y)

1 Drone 15.3 (1,0) Drone 13.2 (0,0)

2 Drone 15.2 (1,1) Drone 13.0 (0,0)

3 Drone 15.0 (1,1) Drone 13.1 (0,0)

4 Drone 15.2 (1,1) Drone 13.1 (0,0)

5 Drone 15.3 (1,0) Drone 13.3 (0,0)

6 Target 15.0 (0,1) Target 13.1 (1,0)

7 Target 15.25 (1,0) Target 13.1 (1,0)

8 Target 15.2 (1,1) Target 13.2 (0,0)

9 Target 15.3 (1,1) Target 13.25 (0,0)

10 Target 15.2 (1,0) Target 13.3 (0,1)

Table 3 shows detailed results of the operation of the KCF algorithm and the Temple

Matching algorithm on the Orange Pi 5 platform when the image processing program for the

fire control system is deployed. The results show that the image processing program on the

author's vehicle fire control system works well and stably. For the KCF algorithm, the target

tracking time is about 15.0 (ms) to 15.3 (ms) with high accuracy. For the Temple Matching

algorithm, the target tracking time is about 13.0(s) to 13.3(s) with high accuracy. This was

tested by the authors to evaluate operating algorithms with two objects: Drones and mobile

shooting targets, specifically:

 KCF algorithm on two platforms: Nvidia Jetson Orin NX and Orange Pi 5

The objects are drones: The drone object moves undulating (non-linear trajectory) and

rotates around itself (object shape is changed) but is still firmly tracked by the software

throughout the object's existence on the screen, but the target frame centre fluctuates by 1

pixel when the subject is stationary, and the software will not automatically detect the target

when it reappears after it exits the frame.

The objects are mobile shooting targets: The object moves linearly and sometimes enters

a partially obscured area but is still tracked firmly by the software throughout the object's

existence on the screen, but the target frame centre fluctuates by 1 pixel when the object is

exposed. A stationary object will not be automatically detected by the software when it

reappears after it leaves the camera's field of view.

 Temple Matching algorithm on two platforms: Nvidia Jetson Orin NX and Orange

Pi 5

The objects are drones: When the drone object moves undulating (non-linear trajectory)

and does not rotate around itself, it is still firmly tracked by the software even when the object

reappears in the camera's field of view. At the same time, the centre of the frame does not

fluctuate when the object is stationary, but when the object rotates around itself (the object's

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2079

shape is changed), the software captures the object very poorly and does not meet the

requirements.

The objects are mobile shooting targets: If the object moves linearly and preserves its

original shape, it is still firmly tracked by the software even when the object reappears in the

camera field of view. At the same time, the target frame does not fluctuate when the object is

stationary, but when the object changes its original shape while appearing in the camera's

field of view, the results of tracking the object are very poor and do not meet the

requirements.

To provide a comprehensive comparison, the processing times of the KCF and Temple

Matching algorithms were also evaluated on traditional CPU systems such as Intel Core I and

AMD Ryzen. The results are shown in Table 4.

Table 4. Comparison of processing times on traditional CPUs.

Algorithm Platform Processing Time (ms)

KCF Intel Core I 10.5 - 12.0

KCF AMD Ryzen 9.8 - 11.2

Temple Matching Intel Core I 6.1 - 7.3

Temple Matching AMD Ryzen 5.9 - 6.8

4. CONCLUSION

The author of this paper has conducted an analysis of two algorithms, highlighting their

respective advantages and disadvantages. Both algorithms have distinct strengths and

weaknesses, and it would be unwise to entirely discard either one. This is because there are

numerous situations in the field, and each algorithm is better suited for certain types of

scenarios. The results achieved by conducting experiments are shown specifically:

The KCF algorithm is suitable for situations where the object changes its original shape,

but when used to destroy the target with many different shots, the user must choose again.

Because the camera shakes between shots, the software cannot track the target. When the

system stabilises, the algorithm does not automatically detect the target.

The Temple Matching algorithm is well-suited for scenarios where the object being

tracked maintains its original shape. This algorithm is capable of firing multiple rounds of

bullets at a target without the need to reselect it. Additionally, due to the target frame's

stability during the tracking process, the probability of successfully destroying the target is

higher with the Temple Matching algorithm compared to the KCF algorithm.

ACKNOWLEDGMENT

The authors acknowledge the Weapons Institute-Vietnam Defence Industry for supporting this work.

REFERENCES

[1]. S. J. Lee, Challenges of Real-time Processing with Embedded Vision for IoT Applications, in

2022 International Conference on Electrical, Computer, Communications and Mechatronics

Engineering (ICECCME), (2022) 1–6. https://doi.org/10.1109/ICECCME55909.2022.9988338.

[2]. I. Rodriguez-Ferrandez, L. Kosmidis, M. M. Trompouki, D. Steenari, F. J. Cazorla, Evaluating

the Computational Capabilities of Embedded Multicore and GPU Platforms for On-Board Image

Processing, in 2023 European Data Handling & Data Processing Conference (EDHPC), (2023) 1–7.

Transport and Communications Science Journal, Vol. 75, Issue 07 (09/2024), 2070-2080

2080

https://doi.org/10.23919/EDHPC59100.2023.10395928.

[3]. J. Suder, K. Podbucki, T. Marciniak, Power Requirements Evaluation of Embedded Devices for

Real-Time Video Line Detection, Energies, 16 (2023) 6677. https://doi.org/10.3390/en16186677.

[4]. M. Barnell, C. Raymond, S. Smiley, D. Isereau, D. Brown, Ultra Low-Power Deep Learning

Applications at the Edge with Jetson Orin AGX Hardware, in 2022 IEEE High Performance Extreme

Computing Conference (HPEC), (2022) 1–4. https://doi.org/10.1109/HPEC55821.2022.9926369.

[5]. R. Brunelli, Computational Aspects of Template Matching, in Template Matching

Techniques in Computer Vision, Wiley, (2009) 201–219.

https://doi.org/10.1002/9780470744055.ch10.

[6]. Y. ABE, T. Fukuda, M. Shikano, F. Arai, Y. Tanaka, Vision Based Navigation System for

Autonomous Mobile Robot. Locomotive Experiments Based on Variable Template Matching, JSME

International Journal Series C, 43 (2000) 408–414. https://doi.org/10.1299/jsmec.43.408.

[7]. J. F. Henriques, R. Caseiro, P. Martins, J. Batista, High-Speed Tracking with Kernelized

Correlation Filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (2015) 583–

596. https://doi.org/10.1109/TPAMI.2014.2345390.

[8]. J. López-Fandiño, D. B. Heras, F. Argüello, Using heterogeneous computing and edge computing

to accelerate anomaly detection in remotely sensed multispectral images, The Journal of

Supercomputing, (2024). https://doi.org/10.1007/s11227-024-05918-z.

[9]. D. O. Dantas, H. Danilo Passos Leal, D. O. B. Sousa, Fast 2D and 3D image processing with

OpenCL, in 2015 IEEE International Conference on Image Processing (ICIP), (2015) 4858–4862.

https://doi.org/10.1109/ICIP.2015.7351730.

[10]. R. S. Dehal, C. Munjal, A. A. Ansari, A. S. Kushwaha, GPU Computing Revolution: CUDA, in

2018 International Conference on Advances in Computing, Communication Control and Networking

(ICACCCN), (2018) 197–201. https://doi.org/10.1109/ICACCCN.2018.8748495.

