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Abstract. As humanity progresses, fossil fuel reserves are being increasingly exhausted, 

leading to increased focus on sustainable energy alternatives. Scientists are now researching 

solar panels that can efficiently convert solar energy into electricity for human use. This 

research employs a novel third-order shear deformation theory to investigate the static 

buckling and static bending behaviors of organic nanoplates, marking the first instance of 

such an approach being used. The formulas are computed using strain gradient theory to 

consider the impact of the size effect, where this size effect parameter is considered in both 

positive and negative cases. The plate's balancing equation is derived using the notion of 

virtual displacement, and the analytical solution is obtained using Navier's solution. The 

mathematical expression for deflection and critical buckling load in this study has been 

validated by comparing it with previously published analytical findings. This study also 

includes a set of numerical calculations to demonstrate the impact of certain geometric factors 

and the size effect on the static bending response and static buckling of organic plates. This 

study aims to assist designers in developing organic plate products that demonstrate optimal 

functionality in real-world applications. 
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1. INTRODUCTION  

With the expansion of modern society, environmental pollution has emerged as a global 

concern, leading to substantial alterations in people's lifestyles. In order to reduce 

environmental pollution, individuals have been actively seeking and using novel materials and 

clean, renewable energy sources. Solar energy is a prominent kind of energy that is garnering 

considerable attention. Solar energy is a feasible choice due to its non-polluting nature and its 

ability to be promptly gathered and used. Furthermore, it does not release any potentially 

hazardous byproducts. Organic solar cells (OSCs) have become more popular owing to their 

many favorable features [1]. The qualities include their affordable cost, straightforward 

production process, nanoscale dimensions, and compact form. Consequently, organic solar 

cells (OSCs) have been extensively used in many industries such as aerospace, automotive 

sector for new energy, and building-integrated photovoltaics (BIPV) [2]. Conversely, the 

OSCs must operate in conditions characterized by varying levels of natural light, moisture, 

and temperature fluctuations. It is essential for all OSC devices to possess sufficient 

compression resistance; otherwise, they will succumb to buckling and malfunction before to 

their designated service life [3]. 

To enhance the efficacy of using OSCs, it is essential to possess comprehensive 

knowledge in several domains, such as picking the material, size choosing, mechanical 

response, and others. Therefore, scientific society has shown enthusiasm for the examination 

of OSC as a result of this. These attempts include optimizing the electrode substance [4], 

enhancing the internal structure [5], and choosing suitable production materials [6]. The 

majority of these investigations focused on the efficacy of various materials. Additionally, the 

devices are fabricated from OSC often suffer from physical harm when used in real-world 

scenarios. As power equipment worn on the skin, they must possess the ability to withstand 

substantial bending and compression [6]. When dealing with structures like OSC, which have 

small dimensions in the micron and nanometer spectrum, it is important to note that both the 

properties of the material and the mechanical behavior of the devices will experience 

significant changes. These updates will happen simultaneously. Research in the past few years 

has seen significant growth in both study and practical application, aiming to enhance the 

precision of predictions about the mechanical properties of microstructures. This is the 

premise to create products with high practical applications and this product has the best usage 

efficiency. When calculating small-sized structures, one can use many non-classical 

continuum theories, including the nonlocal elasticity hypothesis, the revised couple stress 

concept, and the modified strain gradient hypothesis [7-10]. Qingya and colleagues [11] used 

an enhanced version of the plate theory and an updated strain gradient model to explore the 

influence of size effect on free vibration and static bending. In this study, Qingya et al. [12] 

use the revised strain gradient theory and the revised shear deformation plate theory to 

examine the buckling characteristics of simply supported and clamped OSC structures. The 

objective of this experiment was to investigate the causes and mechanisms behind the failure 

of the OSC. Duc et al. [13] provide the first analytical approach for investigating the nonlinear 

dynamic behavior and vibration of imperfect nanocomposite multilayer solar cells subjected 

to mechanical pressures, using the traditional plate theory. The theory's errors arise from its 

initial development using defective rectangular nanocomposite multilayer organic solar cells 

and its inability to consider the influence of size factors on the plate's behavior. Liu and 

colleagues [14] used an efficient isogeometric technique and a couple stress theory to examine 

the influence of size on the thermomechanical operation of organic solar cells. 
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Furthermore, results of mechanical studies are consistently generating a diverse array of 

theories and instruments to research the mechanical properties of structures at the nano and 

micro levels. This establishes a crucial foundation for the advancement of solar thermal cell 

development. The following works serve as sample instances of recently published 

publications. Hamed and Masoud [15] used first-order shear strain theory and analytical 

methodologies to examine the buckling of nanoplates. They ensured to examine the influence 

of both the size effect and the flexomagnetic effect. Furthermore, Naderi [16] employs the 

Navier product solution to address the buckling problem of nano-sized plates, using the three-

dimensional elastic theory. Esen and Ozmen [17] used Navier's solution in combination with 

first-order shear strain theory to analyze the vibration and buckling of nanoplates. Jin and Ren 

[18] investigated the issue of forced vibration caused by bending in nanoplates using Zhang-

Fu's theory. This theory included both the influence of surface energy and the impact of size. 

In their work, Hai et al. [19] used an enhanced strain theory and analytical techniques to 

examine how the size effect impacts the compelled oscillation of composite nanoplates that 

are supported by viscoelastic substrates. The external force applied to the plate in this scenario 

is a moving load. Tuyen [20] utilizes the vibration of the nano-plate on the viscoelastic 

foundation to present a solution for the nanoplate. This solution takes into account the effects 

of temperature and flexoelectricity. The balanced equation is established using classical 

theory and it was solved by exact approach. In their study, Wan et al. [21] examined the 

buckling, free vibrations, and forced vibrations of nano-sized composite plates. These plates 

were supported by viscoelastic substrates and analyzed using the Halpin-Tsai theory. Luat and 

colleagues [22] analyzed the vibration, buckling and bending behavior of a composite 

nanobeam using a new shear deformation concept. The sandwich beam, including a ceramic 

core and two face sheets with functional grading, has considerable potential for many 

applications in engineering and industry. Duc et al. [23] used finite element modeling (FEM) 

together with a unique shear deformation theory based on a hyperbolic sine function to 

investigate the vibration response and static buckling of variable flexoelectric nanoplates. 

Both linear and nonlinear methodologies were used to modify the thickness of the nanoplates. 

Doan and colleagues [24] successfully investigated the vibration behavior of nano-plates by 

combining the concept of a high-order plate theory with the phase-field approach. By 

considering the flexoelectric effect, he successfully included the interdependent connection 

between charge polarization and strain. Shear connections were required for the sliding 

movement between the layers, and Thai et al. [25] conducted a static bending study of 

symmetric three-layer functionally graded sandwich beams. The beam equilibrium equation 

was developed using a combination of the finite element approach and the first-order beam 

theory (FSDT) and, resulting in finite element formulations. Thom and his colleagues [26], 

[27] subsequently provided new numerical findings about the vibration response of a 

fragmented FGM plate. The research used the finite element approach and phase-field theory.  

From the above information, it is evident that there has been no study conducted on 

assessing the mechanical response of organic plate frameworks employing strain gradient 

concept to consider the small-size impact. Hence, this study addresses this issue by using 

analytical techniques. The precise resolution to the problem of static bending and static 

buckling of biological plates is achieved by employing the concept of the enhanced third-

order shear deformation theory.   
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2. CALCULATION MODEL, METHOD AND SOLUTION  

Fig. 1 displays the organic nanoplate model, situated inside the Cartesian XYZ coordinate 

system. The variables a and b represent the dimensions of the model, namely its length and 

breadth, respectively. The nanoplate has five layers, with each layer having a distinct 

thickness denoted by the notation hi. 

x

z

y

h

b

a N0

 

a) General model 

 

b) zy cross-section  

Figure 1. An organic nanoplate model [28]. 

When calculating plate and shell structures, it is common practice to express the 

displacement components along the three Cartesian coordinate axes using different functional 

forms. Every kind of function has certain advantages and disadvantages. Although 

challenging to compute, functional forms accurately depict the mechanical response of 

structures, especially as their intricacy grows. Furthermore, this research employs three 

separate types of functions to compute the displacement components along the Ox and Oy 

coordinate axes. Moreover, this work utilizes a functional form to calculate the displacement 

component along the Oz coordinate axis. The form of the displacement field along the three 

Cartesian coordinate axes may be represented as follows: 

0
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y z
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w w w w
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w ww

   
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                        (1) 

The variables ux, vy, and wz indicate the displacement components along the x- , y- and z- 

coordinate axes. The variable wzb and wzs represent the bending and shear components. The gz 

function is [29]: 
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3 2/ 4 5 / 3zg z z h                                                          (2) 

From the expression of displacement field as (2), the components of strain are: 

2 2 2 2 2

2 2 2 2

2

; ; 2 ; ; ;

2 ; ;

     

 

zb zb zb zs zs
zx zy zxy gx gy

zs zs zs
gxy sxz syz

w w w w w

x y x y x y

w w w

x y x y

    

  

    
         

     

  
   

   

       (3) 

Equation (3) is written in reduced form as: 

0;ε ε ε  γ γz z e s z sz g k                                                         (4) 

in which 1 /z zk dg dz   and 

     0, , ; , , ; ,ε  ε  γ
T T T

z zx zy zxy e gx gy gxy s sxz syz                                       (5) 

Typically, the earlier studies do not include the structural resistance of the structure. This 

results in a divergence between the theoretical calculation and the experience. The stress 

components in the i-th layer, which are calculated using nonlocal theory, may be expressed as 

follows [30-31]:   

   ;   
i i 2 2 i i i 2 2 i

mn mnkq kq rj rj rjl l                                         (6) 

In this context, l denotes the nonlocal parameter; "+" and "-" indicate positive and 

negative nonlocal parameters, respectively; 
2  represents the Laplace operator; 

i

mn represents the stress tensor; and 
i

mnkq  represents the elastic tensor, which comprises the 

material parameters. 

Equation (6) is expanded in the following manner: 
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                                          (7b) 

utilizing the following material properties for the i-th layer: 
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The following are the internal forces of the plate as determined by Equation (7): 
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By employing the notion of potential motion, the researchers of this investigation 

obtained the subsequent balanced equation pertaining to organic nanoplates: 

 0ngl nlW W                                                               (11) 

where 
nglW  and nlW  represent the work performed by the external force and internal 

deformation of the plate, respectively. 

The following represents the potential work of an external force acting on the structure: 
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                 (12)      

where p represents the force that acts at a right angle to the plate, whereas N0 represents the 

compressive force that acts in the average plane of the plate. 

The potential work exerted by the internal force of organic nanoplates may be calculated 

using the following method: 
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Through the substitution of equations (12)-(13) into equation (11), the present study 

derives the subsequent balanced equation describing organic nanoplates: 
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This study employs a double trigonometric series solution to address the static bending 

issue of an organic plate, with the exclusion of the compressive force N0. The answer is 

presented in the following form: 
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Let r and g be integers. U0b and U0s represent the amplitudes of the displacement 

components, respectively. By substituting solution (16) into the equations (14)-(15), the 

resulting expression is obtained: 
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where / , /r a g b     . Alternatively, express in a more concise manner: 
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/ , /r a g b      
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By solving the above system of equations, one may get the values of U0b and U0s, which 

will then be used to calculate the displacement wz of the plate. 

The equilibrium equation of the plate for the static buckling issue, without considering 

the effect of external force q, may be expressed as: 
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/ , /r a g b      

By solving the system of equations (20), we can get the value of N0, which is contingent 

upon the values of two parameters, r and g. The minimum value of N0 represents the critical 

buckling load of the nanoplate. 

3. VERIFICATION  

Verification example 1: The nanoplate has equal sides of 10nm each, a thickness of 0.34 

nm, a Poisson's ratio of 0.3, a Young's modulus of 1100 GPa. The plate is supported by a load 

that is evenly distributed with an intensity of q0. The parameter used for computation and 
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comparison is the displacement at the center of the plate, which is standardized using the 

following formula 

4
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1000
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2 2
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D a b
w w

a q
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 
                                                     (22) 

where 
 

3

212 1
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D


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
. The computation and juxtaposition outcomes are shown in Table 1. 

The findings of this study demonstrate a high degree of correlation between the calculated 

results obtained in this work and those obtained using the finite element approach [30] and the 

solution method [31]. This demonstrates the dependability of the computational theory. 

Table 1. Comparison of the deflection wmax of the nanoplate. 

Nonlocal 

Term 
Method 

l (nm) 

0 0.2 0.5 1 

Positive 

FEM [30] 4.062 4.092 4.252 - 

Exact [31] 4.062 4.091 4.260 - 

This work 4.079 4.107 4.258 - 

Negative 

FEM [30] 4.062 4.033 3.885 3.427 

Exact [31] 4.062 4.033 3.884 3.423 

This work 4.079 4.050 3.904 3.444 

Verification example 2: The square plate has a side length of a, a thickness of h = 0.34 

nm, a Young's modulus of 30 MPa, and a Poisson's ratio of 0.3. The critical buckling load 

parameter is normalized as follows: 

2
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T N
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3

212 1
buck
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D





                                    (23) 

Table 2 displays the findings of analyzing the critical buckling load of the compressed 

plate on all four sides. The calculations for documents [28], [32–33] were done using 

analytical techniques. Based on the comparing data, it can be inferred that the computation 

approach used in this study guarantees dependability. 

Table 2. Examine the buckling load of the plate when subjected to compression from all four sides. 

Method a/h=10 a/h=20 a/h=30 

Exact [28] 1.893 1.972 1.987 

Exact [32] 1.893 1.972 1.987 

Exact [33] 1.893 1.972 1.987 

This work 1.893 1.972 1.987 

4. NUMERICAL RESULTS  

This part presents the findings of calculations for the static bending and buckling issue of 

organic nanoplates, in addition to the previously discussed theory. The ratio b/a takes on the 

values 0.5-3, The thickness is h, and the values of the a/h are from 10 to 50. This plate has 

five layers. The ratio of the thicknesses of the layers is 550/0.120/0.050/0.170/0.100. Table 3 

provides a comprehensive overview of the mechanical properties associated with each 
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individual material layer. The total thickness, denoted as h, remains constant at a value of 

0.55044 nm for all computational instances. 

Table 3. Properties of specific layers in organic nanoplates [11]. 

Order of layer Layer name 
Modulus of 

Young 
Mass density 

Ratio of 

Poisson 

First layer Glass 69 2400 0.23 

Second layer ITO 116 7120 0.35 

Third layer PEDOT: PSS 2.3 1000 0.4 

Fourth layer P3HT: PCBM 6 1200 0.23 

Fifth layer Aluminum 70 2601 0.35 

The plate is supported by a load that is evenly distributed with an intensity of q0. The 

parameter used for computation is the greatest deflection in the center of the plate, determined 

using a dimensionless formula as follows: 

3

4

0 0

10 ,
2 2
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D a b
w w

a q

 
  

 
                                                (24) 

in which 
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 and a0 = 10h. 

To address the issue of plate buckling, the critical buckling load of the plate is determined 

using a dimensionless formula, as shown below: 

2

0 2bl

ogarnic

a
T N

D
                                                            (25) 

Table 4. The maximum deflection of the plate depends on the plate thickness, b/a=1. 

Nonlocal 

Term 
a/h 

l/h 

0 0.2 0.5 0.6 0.7 

Positive 

10 4.648 4.680 4.849 4.938 5.059 

20 71.906 72.032 72.696 73.046 73.460 

30 361.716 361.999 363.485 364.265 365.188 

50 2781.898 2782.681 2786.795 2788.951 2791.502 

Negative 

10 4.648 4.616 4.451 4.368 4.272 

20 71.906 71.780 71.123 70.781 70.379 

30 361.716 361.434 359.955 359.183 358.272 

50 2781.898 2781.115 2777.009 2774.86 2772.323 

 

The maximum bending deflection of the organic plate is determined by the plate 

thickness and the ratio of the lengths of its two sides, as shown in Tables 4–5. Observations 

indicate that: 

+ As the plate becomes thinner and the ratio of its edge lengths grows, the plate's stiffness 

reduces and the maximum displacement of the plate increases. 
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+ When the positive nonlocal coefficient is present, increasing the parameter l results in 

an increase in the maximum displacement of the plate. This demonstrates that the parameter l 

decreases the stiffness of the structure. 

+ When the parameter l grows in the case of the negative nonlocal coefficient, the 

maximum displacement of the plate decreases. This demonstrates that the parameter l 

enhances the stiffness of the structure. 

Table 5. The maximum deflection of the plate depends on the ratio of the lengths of the two sides of 

the plate, a/h=10. 

Nonlocal 

Term 
b/a 

l/h 

0 0.2 0.5 0.6 0.7 

Positive 

0.5 0.768 0.780 0.744 0.926 0.945 

1 4.648 4.680 4.849 4.938 5.059 

2 11.351 11.407 11.701 11.856 12.035 

3 13.526 13.588 13.920 14.095 14.298 

Negative 

0.5 0.768 0.755 0.694 0.665 0.634 

1 4.648 4.616 4.451 4.368 4.272 

2 11.351 11.296 11.013 10.868 10.701 

3 13.526 13.464 13.146 12.984 12.797 

The critical buckling load of organic plates was calculated for several scenarios. 

Tables 6–7 show the findings for the situation where the a/h ratio ranges from 10 to 50, and 

the b/a ratio ranges from 0.5 to 3. The outcome indicates that: 

+ By increasing the ratios of a/h and b/a, the stiffness of the plate lowers, resulting in a 

drop in the critical buckling load of the organic plate. Consequently, the working performance 

of the plate reduces. 

+ When the nonlocal coefficient is positive, raising the parameter l leads to a drop in the 

critical buckling load of the plate. Consequently, the compressive capacity of the plate also 

decreases. However, when the nonlocal coefficient is negative, increasing the parameter l 

leads to an increase in the critical buckling load of the plate. This indicates an increase in the 

working performance of the organic plate. 

Table 6. The critical buckling load of the plate depends on the plate thickness, b/a=1. 

Nonlocal 

Term 
a/h 

l/h 

0 0.2 0.5 0.6 0.7 

Positive 

10 1.736 1.722 1.650 1.613 1.568 

20 0.450 0.449 0.445 0.442 0.439 

30 0.2016 0.2015 0.2005 0.2001 0.1995 

50 0.07287 0.07285 0.07273 0.07266 0.07259 

Negative 

10 1.736 1.750 1.822 1.860 1.904 

20 0.450 0.451 0.456 0.458 0.461 

30 0.2016 0.2018 0.2028 0.2032 0.2038 

50 0.07287 0.07289 0.07301 0.07308 0.07315 
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Table 7. The critical buckling load of the plate depends on the ratio of the lengths of the two sides of 

the plate, a/h=10. 

Nonlocal 

Term 
b/a 

l/h 

0 0.2 0.5 0.6 0.7 

Positive 

0.5 4.046 3.968 3.559 3.345 3.091 

1 1.736 1.722 1.650 1.613 1.568 

2 1.105 1.099 1.067 1.051 1.031 

3 0.9861 0.9811 0.9547 0.9409 0.9246 

Negative 

0.5 4.046 4.124 4.533 4.747 5.000 

1 1.736 1.750 1.822 1.860 1.904 

2 1.105 1.111 1.143 1.159 1.179 

3 0.9861 0.991 1.017 1.031 1.047 
 

5. CONCLUSIONS  

This work has provided a precise solution to the issue of static bending and static 

buckling of organic nanoplates. The plate's balancing equation is formulated based on the 

novel third-order shear deformation theory. Based on the computation findings, this study has 

drawn some key conclusions: As the plate becomes thinner and the thickness ratio between 

the two sides of the plate grows, the plate's stiffness reduces, the maximum deflection of the 

plate increases, and the critical buckling load of the plate lowers. If the coefficient is positive 

and nonlocal, increasing the parameter l results in a higher maximum deflection of the plate 

and a fall in the critical buckling load. This indicates a loss in the working performance of the 

plate. However, when the nonlocal coefficient is negative, the plate's working performance is 

enhanced as the parameter l grows. However, in order to validate the computed model against 

the real model, it is necessary to conduct experiments for testing, hence establishing a 

foundation for practical design of organic plates. 
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