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Abstract. The convolutional neural network is widely applied in the classification of images 

and medicine. Some current networks are used in aerospace engineering and show a high 

potential in determining aerodynamic forces and flow fields. This article constructs a 

convolutional neural network for predicting pressure and velocity fields around a two-

dimensional aircraft wing model (airfoil model). Training data is computed using the 

Reynolds-averaged method, and then extracted, focusing on the flow around the wing. Input 

data includes geometric parameters, and airfoil inlet velocity, and output data includes 

pressure field and flow velocity around the airfoil. The convolutional neural network is based 

on improving the U-Net network model, commonly used in medical applications. The results 

show that the convolutional neural network accurately predicts flow around the airfoil, with 

an average error below 3%. Therefore, this network can be used and further developed to 

predict flow around the wing. The network is then applied to predict the pressure and pressure 

fields around a blunt-based model with different aspect ratios. The main feature of the flow 

can be extracted from the network. Results related to pressure distribution, velocity, and 

method error are presented and discussed in the study. This study also suggests improving the 

network and applying it to pressure and velocity fields in aerospace engineering. 

Keywords: Convolutional neural network, U-Net, airfoil, blunt-based model, flow fields, 

pressure, velocity. 
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1. INTRODUCTION  

Over the past century, the aircraft wing has remained a pivotal component for generating 

lift, which is crucial for flight in the atmosphere. With advancements in aviation and 

computational methodologies, wing database systems have been continually enhanced. 

Prominent examples include the NACA wing system and Xfoil software, which swiftly 

provide data on lift, drag, and pressure distribution on the wing surface [1]. More precise 

techniques, such as utilizing software to tackle finite volume problems, enable comprehensive 

analysis of pressure, velocity, and friction around the wing surface, rooted in classical 

mathematical equations and computational space discretization [2,3]. 

In contemporary times, artificial neural networks have gained widespread application 

across scientific and engineering domains. Leveraging substantial training datasets, neural 

networks yield predictions with minimal errors compared to conventional methods. In 

aerodynamics, artificial neural networks are employed to forecast the lift and drag values of 

models. Global networks like convolutional neural networks facilitate the precise distribution 

of pressure and velocity fields around models with minimal errors. This methodology 

involves generating training and testing data from traditional computational approaches, and 

then restructuring them into four-dimensional arrays. Subsequently, the data undergoes 

convolutional neural network processing to extract features, which are then reconstructed into 

pressure and velocity fields. Throughout the training phase, network parameters are fine-tuned 

to yield pressure and velocity field results resembling the original data. Various networks 

have been developed for this task, such as FlowNet for optical flow and U-Net for medical 

applications [4]. However, it's worth noting that artificial neural networks, beyond their 

mathematical foundations, possess architectural nuances, influencing the outcome based on 

the chosen convolutional network design. 

Another difficult task is from prediction of the flow field around the blunt base model. 

This model features a large separation flow at the base, which results in a low-velocity region 

and high aerodynamic drag [5]. Building a network for prediction flow around the blunt body 

is also an important task, which was not been conducted before. It is also interesting to know 

how much is the accuracy of the current network in predicting the pressure and velocity fields 

around the blunt-base model. 

In this research, we suggest alterations to the conventional U-Net architecture to facilitate 

the extraction of pressure and velocity fields surrounding a two-dimensional aircraft wing 

model (airfoil). Our dataset comprises 400 airfoil instances with varied shapes and flow 

conditions for both training and testing. Our findings from training the U-Net model 

demonstrate its capability to predict velocity and pressure field characteristics with high 

accuracy, exhibiting a typical error rate of under 3%. Thus, these modified networks hold 

promise for computational fluid dynamics applications concerning physical model analysis. 

2. CONVOLUTIONAL NEURAL NETWORK DIAGRAM AND TRAINING DATA 

2.1. Convolutional neural network diagram 

U-Net Convolutional Neural Network is a network architecture used in the field of image 

processing, particularly for segmentation tasks [4] [6] [7]. It was also used by Wu et al. [8] for 

detection of the infrared object. This architecture is designed to retain high-level information 

(learned from convolutional layers) while also maintaining specific positional information 
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(learned from pooling layers). U-Net is typically divided into two main parts: the encoder and 

the decoder. The encoder uses convolutional layers to extract information from the input 

image and applies pooling layers to reduce the feature size while retaining important 

information. Conversely, the decoder uses transposed convolutional layers to reconstruct the 

image with high resolution and combines information from the corresponding encoding layers 

through skip connections to recreate specific objects. U-Net has demonstrated good 

performance in various applications, including cell segmentation in medical images, object 

recognition in images, and many other tasks. The unique structure of U-Net allows it to retain 

both high-level and positional information, making it a popular choice for tasks that require 

both detailed and positional information about objects. The output results depend on the 

number of layers in the U-Net. For the airfoil models, this study uses a U-Net with three 

input-output layers. Additionally, in comparison to the previous study by Du et al [4], the 

network is redesigned by us for a suitable application of the airfoil model. By reducing the 

number of layers, the parameters of the network are reduced and the training process becomes 

faster. The network input is modified to be a three-dimensional matrix of size 128×128×3. 

The size of the image is also modified for the current study. The first two dimensions 

represent the image size, and the third dimension sequentially represents the model's 

geometry, the input velocity in the x direction, and the input velocity in the y direction. Each 

convolutional layer is followed by a ReLU layer, and the final convolutional layer is followed 

by a Max Pooling layer. Initially, the U-Net network was used for image segmentation. 

Therefore, the output parameter is changed to a three-dimensional matrix of size 128×128×3, 

where the third dimension sequentially represents the pressure field, the output velocity in the 

x direction, and the output velocity in the y direction. The network includes 7.6 million 

parameters. The structure of the U-Net and its parameters are presented in Figure 1. The 

network structure and training process are built using MATLAB software. Previously, Du et 

al [4] used Python and many processes for the training. In this study, we create a program, so 

all parameters and their effect on the results can be controlled.   

 

Figure 1. Diagram of the 3-layer U-Net network. 
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2.2. Training Data  

The training data used in this study is taken from the dataset published by Thuerey and 

colleagues [6]. Specifically, the Reynolds-Averaged Navier-Stokes (RANS) method with the 

Spalart-Allmaras turbulence model is used. The model was developed by Spalart and 

Allmaras [9], which uses one additional equation for predicting turbulent eddy viscosity. The 

equation for the model is shown in Eq. (1). The biggest advantage of the Spalart-Allmaras 

model is that the simulation is fast and the requirement of y+ is not strong. Consequently, it is 

widely used in fluid mechanics in the initial aerodynamic designing process [10]. 
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  The other constant parameters are selected as: 

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41, cω2 = 0.3, cω3 = 2, cv1 = 7.1, ct3 = 1.2, ct4 = 0.5 and 

1 2
1 2

1b bc c
c

 


  . 

Calculations are performed in the OpenFoam environment. The geometric features and 

the flow around the model are cropped to a size of 128 × 128 pixels to facilitate the training 

process. Note that since a MATLAB program is used, the size of each node is the same for 

points close and far from the models. Consequently, the boundary layer cannot be captured 

for the training data. A total of 400 data sets are used for training. The angle of attack is 

changed from -22.5° to 22.5°. The Reynolds number is in the range of 0.5-5.0 million. 

Consequently, separation flow can occur on the surface, and training data contains different 

flow types.  The velocity was then normalized by freestream velocity while the pressure was 

normalized by static pressure before training. An example of the training data field is shown 

in Figure 2. Here, the x and y axes present the pixel number and the flow is from the left to 

right. It includes the geometry, the free stream in x and y directions, the results of pressure 

fields, and velocity fields. All data of the input and output has the same size of 128 × 128 

pixels. Note that this data was generated by Thuerey and colleagues [6] with detailed 

validation. Here, we can see that the numerical method can simulate well the flow 

phenomenon around the airfoil model such as the separation flow on the trailing edge, a high 

pressure and low velocity around the leading edge. However, since the data in MATLAB is 
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organized as a matrix, the boundary layer may not be captured well in the simulation. 

Consequently, it can be confirmed that the training data is reliability. 

   

   

Figure 2. Training data for the training process. 

2.3. Training Model 

The three-layer U-Net network described in section 2.1 is used for the training process. 

The airfoil data is divided into 80% for training and 20% for testing. The training data is 

divided into mini-Batch with a size of 10. The loss function is calculated as the average error 

of the pressure field and velocities during training with the standard data. The loss function of 

is determined by Eq. (2): 

, ,( )x x True x PridictLoss P P P   

                                                                  (2) 
, ,( )x x True x PridictLoss V V V   

, ,( )x x True x PridictLoss U U U   

 ( ) ( ) ( )x yLoss mean Loss P Loss U Loss U    

Note that the loss function by Equation (2) was often used for training process of 

aerodynamic qualities, previously. A total of 100 epochs are performed for the training 

process. The adaptive moment estimation (Adam) algorithm is used. The learning rate is fixed 

at 0.001. It should be noted that the learning rate can affect the convergence of the problem. 

However, calculations in this study show that reducing or changing the learning rate around 

the chosen parameter does not significantly change the loss function. Additionally, four, and 

five-layer U-Net were also attempted in predicting the pressure and velocity fields. However, 

the training time increases while the results are not improved. Consequently, a three-layer 
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network was applied in the current study. The training process is performed using MATLAB 

software on the graphical card (GPU). For the training, we used our personal computer 

Lenovo P50 core i7 with four cores, RAM 32Gb and GPU 2Gb. The time for training is 

around one hour for one case. 

3. RESULTS AND DISCUSSION 

3.1. Training Error 

Figure 3 shows the changes in the loss function over the number of epochs. An enlarge 

result of loss function is also presented in the right figure. It can be seen that the loss function 

decreases rapidly at the beginning and gradually decreases up to 3000 iterations. However, 

when further increasing the number of iterations, the results change little and converge to a 

value of 0.05. The loss error is small, and the training results for the pressure and velocity 

fields can be obtained with small errors. 

 

Figure 3. Changes in the loss function over iterations. 

 

Figure 4. Changes in error over test data. 
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Figure 4 shows the average error results of the test data. Here, the rest eighty data sets are used for 

testing. Note that this is the rest of the data, so we observe that the error is not decreased with the 

number of images. It can be seen that the average error of the calculations is less than 3% for both the 

pressure field and velocities. However, in some cases, the error increases to 6% or 8%. This can be 

explained by the fact that when changing the angle of attack, the flow field around the model becomes 

complex, and thus the error tends to increase. However, the average error is small, indicating that the 

method is effective in predicting the flow field around the model. 

3.2. Training Results 

  

Figure 5. Changes in error over test data. 

Figure 5 shows the training results of an airfoil model after 100 epochs. It can be seen 

that the training results predict the pressure and velocity fields around the model quite 

accurately. In the details, the low-pressure and low-velocity region below the airfoil can be 

described quite accurately from the training. Similarly, the high-velocity region above the 

model can be described relatively accurately through training. Far from the airfoil, the flow 

velocity turns to the freestream value and can be obtained well from the training process. 

Consequently, the main characteristics of the pressure and velocity can be captured highly 

accurately from the training results. A limitation is that in comparison to numerical simulation 

calculations, the training results show less smoothness, especially in the pressure field on the 
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upper surface and velocity field v. This can be explained by the fact that the training model 

considers each pixel individually and lacks mathematical connections between neighboring 

pixels. 

3.3. Flow around thin airfoils 

 

Figure 6. Changes in error over test data. The unit of velocities component is m/s and the unit of 

the pressure is atm. 

Figure 6 presents the results for a very thin airfoil at high velocity and zero angle of attack. The 

thin airfoil is sufficiently good to delay the separation flow at low air density and low pressure, which 

should often be applied for unmanned aerial vehicles in the stratosphere. The thin airfoil could be a big 

problem for the network due to the low resolution of the data. However, as can be seen, the pressure 

and velocity field around the model can be predicted well from the current network. For the pressure at 

the upper surface, some inaccurate results occur, which is probably from insufficient data for the 

training process. The findings regarding the airfoil indicate that the average error in pressure and 

velocity fields is below 3%. While this error rate is deemed acceptable, there are inquiries regarding 

the potential for further reduction. Clearly, augmenting the volume of training and testing data holds 

promise for minimizing calculation errors. However, such an augmentation demands substantial 

computer resources, posing a significant challenge, particularly within the context of Vietnam's 

conditions. Additionally, enhancing the artificial neural network architecture could aid in error 

reduction. Nevertheless, in our investigations, employing 4 or 5 layers of the U-Net network did not 

yield a substantial decrease in calculation error despite the increased network parameters. Exploring 

alternative types of artificial neural networks, such as Flownet or novel architectures, may offer 

avenues for reducing calculation errors. Another area of concern is the precision of pressure 

distribution on the model surface when employing such artificial neural networks. While certain other 

networks may enhance the accuracy of pressure field distribution prediction, the current state of 

artificial neural networks fails to fully encapsulate the physical constraints of flow, such as the 

continuity of velocity and pressure fields. Therefore, integrating physical constraints into the input 

data could potentially enhance the model's accuracy. These specific inquiries will be addressed in 

detail in our forthcoming research endeavors 
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3.4. Application of the Network in determining the flow fields around the blunt-base 

model 

 

Figure 7. Flow around the blunt body by the current convolutional neural network. The x and y 

axes present the pixel. Flow is from left to right. The unit of velocities component is m/s and the 

unit of the pressure is atm. 

In this section, flow around the blunt body model is extracted to show the ability of the network 

to determine the flow. Here, the blunt body with different aspect ratios from 1.7 to 8.5 was 

investigated. We divided the data into ten cases with a fixed length. The large length of 8.5 is similar 

to a model in the previous study by Tran et al. [11], [12]. The short length of the model was studied by 

Nonomura et al. [13]. The velocity inlet of two components is at (1, 0) m/s. As can be seen in Figure 7, 
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the high pressure at the nose of the models can be predicted well from the networks. Similar to Figure 

2, here, the x and y axes present the pixel number and the flow is from the left to right. Since this study 

focuses on image analysis and the axe presents the pixel number, we do not present them in the figure. 

As the fluid approaches the nose of the model, the pressure is high and velocity becomes low. Behind 

the base, a low-velocity region is also formed. The network allows us to predict the pressure and 

velocity fields well and the basic concept of flow physics can be understood. However, for higher 

accuracy, the training process should include the blunt body. Additionally, a simulation should be 

conducted to obtain the training data. It is one of our further tasks. 

4. CONCLUSION 

In this research, a convolutional neural network (CNN) is developed to replicate the flow 

around an airplane wing model. The training dataset is generated by solving the Navier-

Stokes equations using the Reynolds-Averaged Navier-Stokes (RANS) method. Despite the 

simplicity of the training model, the neural network contains a large number of hidden 

parameters. The training results indicate a good fit with a small error between the training 

data and the simulation outcomes. Consequently, the findings from this study can be utilized 

to predict the primary characteristics of the pressure and velocity fields around the model, 

aiding in the optimization of the airplane wing shape under specific operating conditions. The 

network is further employed to predict the pressure and velocity around a blunt-base body 

with different aspect ratios, yielding highly accurate results. Nevertheless, the model requires 

further refinement. Moreover, enabling the machine learning model to comprehend the 

physical phenomena of the flow remains a complex challenge that future research needs to 

address. 

The other problem could be three-dimensional (3D) simulation and training. Although the 

generation of data for training of the 3D simulation is not complicated and can be done by us, 

the large size of the data can be a problem for the training process. As we can see from Figure 

1, the matrix of the training data should have five dimensions for training 3D simulation. It 

should be a big problem for training using personal computer. However, since the principle of 

the training remains the same, this training process can be done. It is an important task of our 

further study.   
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