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Abstract. Vehicle inertial parameters such as mass and moments of inertia are required for 

most vehicle dynamic control systems. Due to the wide range variation of these parameters 

during vehicle operation, accurate estimation of their values in real-time plays an important role 

in improving the efficiency of vehicle control systems. In this article, the vehicle sprung mass 

and moments of inertia are estimated in real-time based on a Kalman-Bucy filter algorithm 

designed for a spatial vibration model of a two-axle truck. This proposed method requires 

measuring only the vertical, roll, and pitch velocity of the sprung mass and, therefore can reduce 

the sensor cost significantly. The simulation results for a random roughness road profile 

according to ISO 8608 class C with step variations in sprung mass and moments of inertia 

showed that the designed estimator rejected the process and measurement noises and tracked 

the real vehicle parameters effectively with acceptable errors. 
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1. INTRODUCTION 

The inertia parameters of a vehicle, such as the sprung mass and roll and pitch moment of 

inertia, have a significant effect on vehicle ride handling, safety, and fuel consumption as well 

as the efficiency of vehicle dynamic control systems [1-3]. The nominal value of these 

parameters is usually measured off-line by commercial testbeds or calculated using 

mathematical approaches. However, depending on the various load conditions, the value of 

sprung mass and moments of inertia can be varied over a wide range. The difference between 

the actual value of vehicle inertia parameters and their assumption of constant value throughout 

all operating conditions results in a reduction in the accuracy and performance of control 

systems. Therefore, accurate identification of inertial parameters in real-time is a crucial role in 

improving the performance of vehicle control systems. Additionally, information on vehicle 

mass can be integrated with the vehicle monitoring device to help the transport companies and 

the transport administrations manage and control more effectively overloaded vehicles. 

Generally, the approaches for estimating vehicle inertia parameters in real-time are based 

on various vehicle dynamics. The most common approach is based on longitudinal dynamics 

mainly applied to modern vehicles since it can use existing sensors installed. An example of 

mass estimation employs the vehicle engine torque, drive train inertia, wind resistance, rolling 

resistance, and road grade [3-6]. The problem as addressed by [3] is that the parameter 

estimation is highly sensitive to the estimation of the rolling resistance of the vehicle, a 

parameter that changes non-trivially over time. Using lateral dynamics is another approach for 

the estimation of vehicle parameters [2, 7]. Like the longitudinal dynamics-based approach, this 

method also requires multiple sensors available on the vehicle to measure the necessary signals. 

Valid information from the suspension could give good estimates of the inertia parameters of 

the sprung mass [8-11]. This requires some sort of sensing to measure either the relative 

displacement of the spring or the suspension force [8-10]. Therefore, the approach based on 

vertical dynamics can be seen as the most suitable choice for the estimation of vehicle inertia 

parameters without existing sensors installed. 

While several estimation methods have been proposed in the literature, such as Kalman 

Filtering (KF) [3, 9], Extended Kalman Filtering (EKF) [7, 10], Recursive Least Squares (RLS) 

[6], and many others, none of them have seen widespread adoption in current vehicle 

technologies despite their potential to significantly improve automotive controls. The 

applications of the Kalman-Bucy filter (KBF) for estimating the vehicle inertia parameters or 

the state parameters of a vertical dynamics model have been introduced in [8, 11]. The mass 

and pitch moment of inertia of the vehicle sprung mass can be estimated using a KBF designed 

based on a half-car vertical vibration model with vertical accelerations of the front and rear axle 

are measured outputs [8].  

This article introduces a KBF designed for a simplified spatial vehicle model that uses only 

the vertical, roll, and pitch velocity of the sprung mass as measured outputs to estimate the 

sprung mass and roll and pitch moment of inertia of a two-axle truck. The relative displacement 

and relative velocity of suspension at four wheels are treated as the system inputs instead of the 

road excitations. Thus the proposed method avoids the requirement of knowing or estimating 

the ground inputs. Simulation analysis and evaluation results implemented in Matlab Simulink 

with the designed KBF have demonstrated the effectiveness of the estimator in roughness road 

conditions with the step variations of the sprung mass inertia parameters in real time. 
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2. SPATIAL VIBRATION DYNAMICS OF VEHICLE 

This section introduces a conventional 7 degree of freedom (DOF) spatial vibration model 

used for simulation as a real vehicle to gather vertical vibration signals of the sprung and un-

sprung mass from road excitations. Those signals are then considered as the measured inputs 

of a simplified 3 DOF model employed to design the KBF estimator.   

2.1. Conventional Spatial Vibration Model of Vehicle  

The conventional model of spatial vibration of a two-axle truck described in Figure 1 

consists of a rigid chassis (characterized by the sprung mass ms, roll moment of inertia Jx, and 

pitch moment of inertia Jy) connected to the front and rear solid axle (characterized by the un-

sprung masses muf, mur and roll moments of inertia Juf, Jur respectively) by four suspension 

systems (denoted by the spring stiffness csi (i = 1 4) and damping coefficient ksi) at the four 

wheels (denoted by the tire stiffness cui). For the model, it can be assumed that:1) the wheels 

do not leave the road surface, 2) the suspension and tire characteristics are linear, 3) the roll and 

pitch angle are very small, and 4) the position of vehicle center of gravity is unchanged. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 1. Conventional spatial vehicle model.  

The model has 7 DOF: vertical displacement Z, pitch motion Θ and roll motion Φ of the 

sprung mass; vertical displacements Zuf and Zur and roll motion Φuf and Φur of the front and 

rear un-sprung mass, respectively. The model inputs are the road profiles qi at the four wheels. 

The equations of motion of the conventional spatial vehicle model corresponding to 7 DOF 

is written as follows: 
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where the suspension force Fsi and the tire force Fui at the wheels is calculated by: 
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of relative displacement and velocity between the sprung mass and un-sprung mass used as the 

inputs to the simplified model. Then the equations of motion of the conventional spatial model 

can be expressed in the state-space form: 
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with the system matrices A01, B01, C01, and D01 are defined by: 
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and other matrices are described as follow:  
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All parameters of the model in Equation (5) are assumed to be known or predefined, 

therefore all matrices above are time invariant. 

2.2. Simplified Vehicle Model 

During operation, the variation in the vehicle load only changes the inertial parameters of 

the sprung mass, (including sprung mass ms and moments of inertia Jx, Jy). In contrast, the 

inertial parameters of the un-sprung mass are unchanged. It is therefore possible to simplify the 

conventional spatial vehicle model to a simplified model of the sprung mass with the four 

vertical displacements of the unsprung masses as inputs as depicted in Figure 2. This reduces 

the computational complexity and removes the need for knowledge about the weight, stiffness, 

and damping coefficient of the wheels and knowledge about the road profile. Thus, the 

simplified vehicle model has only 3 DOF: vertical displacement Z, pitch motion Θ, and roll 

motion Φ of the sprung mass. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simplified vehicle model. 

Equations of motion of the simplified model are the first three lines in Equation (1), which can 

be expressed in the matrix form:  
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To estimate these parameters via the KBF method, the state-space equation of the simplified 

model can be defined as follows:  
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It should be noted that since p is time invariant, =p 0  in Equation (7). 

3. KALMAN-BUCY FILTER DESIGN 

The traditional Kalman filter (KF) is a discrete filter over time [3]. In practice, many cases 

require estimation of state parameters that cannot be directly measured by a system that varies 

continuously over time. Then it is necessary to design a continuous filter over time to replace 

the KF that continuously calculates the state parameters of the system. The Kaman-Bucy filter 

(KBF) can be considered the time-continuous filter of the KF [12]. 

 

 

 

 

 

Figure 3. Diagram of the Kalman-Bucy filter for 3 DOF simplified model. 

The diagram of the KBF for the 3 DOF simplified model is shown in Figure 3, where u02(t) 

is the vector of inputs, y02(t) and 02 ( )ty denote the vector of actual and measured process outputs,

02
ˆ ( )tx and 02

ˆ ( )ty stand for the estimated states and outputs. The vector w(t) and v(t) are random 

variable vectors representing process noise and measurement noise. These two random 

variables are independent of each other and are assumed to follow the Gaussian normal 

distribution with mean zero and the covariance matrix are Q and R, respectively: w(t)~N(0, Q), 

v(t)~N(0, R).                                                                                                     

The task of the KBF is to estimate the unknown states with given inputs and measurable 

outputs. differ from the KF which uses a predictor-corrector algorithm to update the state 

estimates, the KBF requires integrating a differential Riccati equation through time. The filter 

update equations are given by [8,11,12]:  
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In the above K is called the KBF observer gain matrix, P denotes a covariance estimation 

matrix of the measurement error satisfying the Riccati equation, R is the weighting matrix of 

measurement noises, and Q is the weighting matrix of process noises. For KBF implementation 

both ˆ ( )tx and ( )tP must be integrated through time.  

Figure 4 shows the block diagram for estimating the vehicle inertia parameters in Matlab 

Simulink with the KBF designed on the base of the 3 DOF simplified model. The block 

“Kalman-Bucy Filter” is an embedded Matlab function used to calculate the KBF algorithm in 

Equation (8), where “Filter State Out” contains both ˆ ( )tx and ( )tP .  

 

Figure 4. Kalman-Bucy filter for spatial vehicle model in Simulink. 

4. SIMULATION AND EVALUATION 

In this section, the KBF designed for the simplified spatial vehicle model is used to estimate 

the mass, roll moment of inertia, and pitch moment of inertia of the sprung mass. The vehicle 

parameter values are listed in Table 1, where the damping coefficient of the wheels is neglected, 

other parameters of the suspension system are identical for the left and right side. The system 

input is a random roughness road profile according to ISO 8608 class C [13] with differences 

between the two sides of the wheel. The magnitude value of the vector of process noise and 
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measurement noise are chosen as w(t) = [1, 1, 1, 1, 1, 1, 1, 1]Tx10-3 and v(t) = [10-3, 10-4, 10-4]T, 

respectively. 

In the first 7 seconds of the simulation, the actual value of the sprung mass parameters is 

the norm value as shown in Table 1. During the next 7 seconds, the value of the sprung mass 

parameters increases by 1,5 times and then reduces by 2 times in the remaining time compared 

to the norm values. The initial value of the sprung mass parameters before estimating is set at 

2 times the norm values. 

Table 1. Actual vehicle parameters. 

Description Symbol Value Unit 

Sprung mass mS 5394 kg 

Roll moment of inertia  Jx 4600 kgm2 

Pitch moment of inertia  Jy 19632 kgm2 

Front un-sprung mass muf 266 kg 

Rear un-sprung mass mur 427 kg 

Front suspension damping coefficient ks1,2 7733 Ns/m 

Rear suspension damping coefficient ks3,4 9804 Ns/m 

Front suspension stiffness cs1,2 177000 N/m 

Rear suspension stiffness cs3,4 193844 N/m 

Front wheel stiffness cu1,2 493211 N/m 

Rear wheel stiffness c u3,4 986422 N/m 

Wheel damping coefficient kui 0 Ns/m 

Distance from front wheel to the vehicle center of gravity lf 2,400 m 

Distance from rear wheel to the vehicle center of gravity lr 1,685 m 

Distance between 2 front wheel tracks 2tf 1,705 m 

Distance between 2 rear wheel tracks 2tr 1,495 m 

4.1. Simulation Results 

Simulations performed with different values of the KBF measurement covariance R and 

process covariance Q show that the convergence time and noise reduction effect depended 

significantly on the noise variance of the states and measurements. The lower the value of R 

compared to Q, the better the convergence time and noise reduction effect. 

The time history of the estimated vertical, roll, and pitch velocity and the inertia parameters 

of the sprung mass for the case of measurement covariance R = diag ([5x10-5, 5x10-4, 5x10-4]) 

and process covariance Q = diag ([1, 1, 1, 1, 1, 1]) are depicted in Figure 5 and Figure 6, 

respectively. The thin-dark lines denote the estimated signals and bolt-light lines represent the 

actual signals. 
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Figure 5. Estimated and actual outputs for random roughness road. 

 
Figure 6. Estimated and actual inertia parameters of the sprung mass. 
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4.2. Evaluation 

The accuracy of the estimator is evaluated through the root mean square error (RMSE) and 

mean absolute percentage error (MAPE) according to the following formula: 

( )
2

1

1

1
ˆ ,

ˆ1
  100%,

n

i i
i

n
i i

ii

RMSE y y
n

y y
MAPE

n y

=

=

= −

−
=





                                                                                         (10)     

where yi (t) is the actual parameter received from the 7 DOF spatial model, ˆ ( )iy t denotes the 

estimated parameter obtained by the KBF algorithm, and n stands for the total number of 

estimations made. 

The errors between the estimated and actual parameters calculated in Table 2 show that a 

high accuracy estimated result can be obtained with the KBF algorithm applied to vertical, roll, 

and pitch velocity of sprung mass estimation. 

Table 2. Estimated velocity and inertia parameter errors of the sprung mass. 

Parameters Z (m/s)  (rad/s)  (rad/s) mS (kg) Jx (kgm2) Jy (kgm2) 

RMSE  0,007 0,014 0,012 509,4 566,7 1829,5 

MAPE 3,50 (%) 1,21 (%) 0,851 (%) 4,18 (%) 3,29 (%) 3,51 (%) 

5. CONCLUSIONS 

Based on a 7 DOF spatial vehicle model, the paper proposed a 3 DOF simplified model to 

design an estimator of vehicle inertia parameters, including mass and moments of inertia of the 

sprung mass. This model allows to simplify the determination of input signals for the estimator 

and allows the elimination of the impact of random factors from the road surface. Since the un-

sprung mass of the vehicle does not change during operation, the value of vehicle inertia 

parameters for control systems can be determined easily by estimating the inertia parameters of 

the sprung mass.  

The parameter estimator is designed based on the Kalman–Bucy filtering algorithm applied 

to linear systems that change continuously over time. The working quality of the estimator is 

evaluated by simulation using Matlab Simulink software. The simulation results and error 

evaluation for a random roughness road excitation showed that the estimated parameters 

quickly converged to the actual value after a time of 0,5 seconds with an error of less than 10%. 

This allows theoretically confirming the efficiency and accuracy of the designed Kalman–Bucy 

estimator compared to other estimation methods. 
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