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Abstract. Layered structures are widely used in construction, such as pavement structures 

consisting of multiple layers of different materials or interfaces between bricks and mortar in 

masonry structures, etc. In analyzing such structures, understanding the properties of the 

interface between two layers of materials is essential. If one layer of material contains cracks 

and layers exhibit viscoelastic behavior, determining the properties of the interface becomes 

challenging. This study proposes a constitutive mechanical law to model the behavior of the 

interface between a microcracked viscoelastic medium and an undamaged elastic body based 

on the homogenization method. The interface is modeled by a layer of zero thickness. The 

coupling between the homogenization technique and the Griffith’s theory is used to provide 

the effective behavior of the micro-cracked medium. The interface is modelled as an effective 

medium (EF) characterized by normal and tangential stiffnesses ( ,N TC C ). In this work, two 

viscoelastic models are considered, i.e., Burger and Modified Maxwell. The formulas of 
NC  

and
TC for two cases of crack distributions (isotropic and transversely isotropic) are obtained 

by asymptotic techniques where the thickness of the joint tends to zero. 
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1. INTRODUCTION 

Recently, in civil engineering practice, growing numbers of hybrid structures made from 

different materials have been built. These structures are widely employed in the construction of 

road pavement surfaces, embankments, and civil engineering projects. Understanding the 

characteristics of interactions between material layers is essential for more accurately simulating 

the behavior of hybrid structures under the influence of various load types. These materials 

(steel, concrete, asphalt concretes, masonry, glass, …) may work integrated or jointly resulting 

in substantial savings and higher quality constructions [1-3]. Indeed, structural interaction 

between the components of hybrid structures produces a composite structure with a complicated 

behavior and depends on the type of the components [4-6]. When one material is much stiffer 

than the other, the phenomenon of delamination causes complex degradations of layers and 

inter-laminar connections. The more solid material is usually assumed to be an undamaged 

elastic part while the weaker one is usually a nonlinear material [7]. It is well known that cracks 

or debonding usually run along the interface [8-10] and material properties of the matrix, i.e., 

the weaker, play a very important role [11].  Experimental outcomes confirmed that most of the 

interface between a linear material and a nonlinear material behaves nonlinearly [12,13]. 

Besides, among the hybrid structures, concrete, and mortar, which exhibit usually viscoelastic 

behavior, are the most commonly used materials [14,15]. Although extensive research has been 

done into hybrid structures, little attention has been paid to discrete interface connections 

between their components, especially in the case of nonlinear behavior interfaces. Indeed, the 

interface is assumed to be elastic and damageable in most cases [16-18]. Some studies analyze 

crack growth along the interface [19,20]. Reinoso et al. [21] proposed a nonlinear cohesive 

interface model with a finite thickness for modeling delamination in fiber-reinforced composite 

laminates relying on the solid shell concept which is especially relevant for the analysis of thin-

walled composite structures.  

This study aims at deriving nonlinear laws, based on homogenization methods, for the 

interface between a viscoelastic medium and an undamaged elastic body. The interface is 

represented by a layer of zero thickness with a low stiffness and characterized by normal and 

tangential stiffnesses ( ,N TC C ). Rekik and Lebon [18] proposed a homogenization procedure to 

obtain an interface law for the case of a masonry structure composed of bricks and mortar. They 

assumed that the interface material is a third material, which is a mixture of the two materials 

with the presence of microcracks.  The effective behavior of this interface material is estimated 

by the Kachanov homogenization model. Then, the normal and tangential rigidities of this 

interface are defined by using the asymptotic analysis technique where the thickness tends to 

zero. This procedure is only good if the volume fractions of two material components (bricks 

and mortar) are equal and their mechanical properties are not much different.  

This study aims to propose rheological laws for the interface between two materials of hybrid 

structures that the difference in stiffness between them is important. When one material is much more 

solid than the other, the interface law is assumed to depend only on the weaker component. This 

component is proposed to have viscoelastic behavior with or without micro-cracks. These features of the 

hybrid structural behavior suggested the use of non-linear interface elements. The mechanical 

characteristic of the micro-cracked viscoelastic medium is investigated by using the coupling between 

the homogenization technique and Griffith’s theory. The steps are illustrated in Figure 1. Two types of 

viscoelastic models, Burger and Modified Maxwell are adopted for isotropic and transversely isotropic 
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cases. After an effective medium (EM) is defined, the interface law is derived by an asymptotic analysis.  

The properties of the interface law will be discussed in the third part. 
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Figure 1. Homogenization methods for nonlinear interfacial laws. 

2. COUPLING BETWEEN HOMOGENIZATION AND GRIFFITH THEORY 

To describe the viscoelastic behavior of an intact medium at ambient temperature, several 

rheological models have been proposed, such as Maxwell, Kelvin-Voigt, Ross, Burgers, 

Maxwell modified, Maxwell generalized, Kelvin-Voigt generalized, and USBR [22, 23]. The 

Modified Maxwell model has been proposed by Lenczner [24] and Choi et al. [25] to model 

the creep behavior of masonry while the Burgers model provides good results for concrete 

behavior [26]. Therefore, only the Burgers and Modified Maxwell (MM) models are 

considered in this work for most of the hybrid structures. 

The macroscopic strain is deduced from the average of the local strain ε(t) in the 

uncracked medium corrected by the strain induced by the presence of micro-cracks: 

 
1

s i

s

i i
C

i

dV u n dS
V

 


 
   

 
   (1) 

where Ωs is the domain occupied by the uncracked material, V is the volume of Ω (with 

or without cracks) and 
2

s b
b

a b a
a

  
  for the vectors a and b, iC   and denote 

respectively the area of the crack i and the normal vector to the plane of this crack,  iu   

denotes the displacement jump across crack i. 

To estimate the effective behavior of the viscoelastic medium containing an isotropic or 

parallel distribution of elliptic fissures, three steps are proposed as follows:  

 The 1st step consists of the passage from the space of real times to the symbolic 

space. This makes it possible to convert a problem of linear viscoelastic material into a 

symbolic linear elastic problem due to the Laplace-Carson (LC) transform. In the symbolic 

space, the displacement jumps   
*

iu  are supposed to depend linearly on the macroscopic 

stress and are expressed by the coupling between the diluted homogenization scheme and the 

Griffith theory. Concretely, in mode I the displacement jump is normal to the crack plane  
*

nu  

and in mode II the displacements jump is parallel to the crack plane  
*

tu  
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   
* ** *

* *2 2 2 2

* * *

4(1 ) 4(1 )
;

(2 )

s s

n t

s s s

u l u l
 

 
    

  
   


 (2) 

The equation (1) can be rewritten as follows: 

                                        
** *1

s i

s

iiC
i

dV u n dS
V

 


 
   

 
   (3) 

 The 2nd step deduces the macroscopic symbolic deformation of the medium. It is possible to define an 

effective linear behavior for the micro-cracked medium in the symbolic space in equation (3) as follows: 

                                                     

1** *:
cdC


   (4) 

where 
1* *

c cd dC S


  is the apparent effective compliance tensor,
*

cdC  is the apparent effective 

stiffness tensor of the micro-cracked viscoelastic medium. 

 The 3nd step is to determine the global behavior in the real space time. The inverse of the 

LC transform is only possible for some simple cases. Thus, it is then interesting to approach in the 

symbolic space, at least in the short and long terms, the symbolic effective stiffness (or compliance) 

by an existing rheological model. For example, if the uncracked medium behaves as the MM model, 

we try to approach the symbolic effective behavior of the corresponding micro cracked medium by 

the same model. The best approximation of the apparent rigidity 
*

cdC  which results from the 

coupling between the homogenization technique and Griffith’s theory of a micro- cracked 

viscoelastic mortar whose creep behavior follows the rheological model of MM in the class of the 

same model (i.e., of MM) in short (t → 0) and long (t → ∞) terms (for more details, see [27, 28]). 

After validation of this approximation in short and long terms, the inversion of the apparent effective 

stiffness will be straightforward. Therefore, the effective behavior of the micro-cracked viscoelastic 

mortar could be expressed in the real space time.  

Hooke's Law provides the following definition of the compliance tensor of 

homogenized effective medium: 
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 (5) 

The stiffness tensor C  is the inverse of S . If 
3333 1313,C C   are the components of , then 
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3333 3 1313 23,C E C    (6) 

An effective medium of the viscoelastic medium with opening spherical cracks is shown 

in the following for two cases of crack distribution: isotropy and parallel.  

2.1. Isotropic distribution of cracks 

For the case of isotropic distribution of cracks, the apparent effective stiffness of the micro-

cracked viscoelastic medium is also isotropic and can be expressed in the tensor form as: 
* * *3 2

c
c c

d d dJ KC k    (7) 

with *

cdk and *

cd are the apparent effective bulk and shear moduli, respectively given by: 

*

**

11

c

c

sd

d Q

kk


 ,  

*

* *

11

c

c

d s

d M

 


  (8) 

where 
*2 * *

* *

* *

1 (1 )(5 )16 32
,  

9 1 2 45 1 2

s s s

s s

Q M
  

 

  
 

 
 and 3

cd Na is the dimensionless crack density 

parameter; N is the number of cracks per unit of volume and   is radius of the cracks. 

2.1.1 Burger model 

 

Figure 2. Burger model (a) and its deformation response (c) under the effect of a constant stress (b). 

Nguyen et al. [26] showed that the Burger model is the best approximation to identify the 

apparent rigidity 
1* *

c cd dS C


  for micro-cracked viscoelastic concrete. In such a model, two 

moduli in (7) are: 

*

*

1 1 1 1
;

( ) ( ) / 3 ( ) ( ) / 3( , )

1 1 2 1

( , ) ( ) ( ) ( ) ( ) / 2

e s e s

M c M c K c K cBu c
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
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 (9) 

which are the functions of 8 parameters: 
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( ) ( ) ( ) ( )

e e v v

M c M c M c M c

e e e e s s d d

M c M M c M M c M M c M

e e v v

K c K c K c K c

e e e e s s d d

K c K K c K K c K K c K

Q d M d Q d M d

k d k d d d

Q d M d Q d M d

k d k d d d

     

     

    
   




       



 (10) 

where 
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Using (6), the Burger model gives: 
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where  
( ) ( )

( ) , ( )
3 ( ) 2 ( )

s d
s dK c K c
K c K ce e

K c K c

d d
d d

k d d

 
 


    

2.1.2 MM model 

 

Figure 3. MM model (a) and its deformation response (c) under the effect of a constant stress (b). 

In the MM model, two moduli in (7) are: 
1 1
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in which there are 6 parameters: 
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Using (6) for the case of isotropic distribution of cracks, MM model gives: 
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with 
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2.2. Parallel distribution of cracks 

The apparent compliance tensor 
*

S of the micro-cracked medium is transversely isotropic 

and is written in the Walpole base in the form: 

                                                 
6

* *

1

i i

i

s ES


  (18) 

To determine the parameters *

is , we consider different types of loadings. Nguyen [29] 

expressed the apparent macroscopic law in the Walpole base based on the moving solution of 

the problem of brittle fracture. For example, the case of uniaxial tension N Σ  in the 

direction of the normal displacement jump to the crack plane (mode I) gives us *

2s  and *

5s . 

*

* * * * * * *

2 5 2 5*

8(1 )

3

c T
d

s N s s N s T





  
           

   
 (19) 

with ; 1N T N   n n ; * * *

2 2 (1 )cs s N d  where 
*2

* 16(1 )

3

cd
N


 and 

* *

5 5s s
 

For the sake of completeness, the Walpole base formulas available in the literature are recalled 

in the [29].  For the other cases of loadings, transverse traction and transverse shear, see [30]. 

2.2.1 Burger model 
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In Burger model, 
*

2s is written as:  
1
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 (24) 

It is worth noting that only 4

* *

2 ,s s depend on the density of cracks cd . 

Using (6) for the case of transversely isotropic distribution of cracks, Burger model gives: 

1

1
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5 2 4
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2
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2 (t) ) ( ) ( )
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s t

s t s t t
E
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 
 (25) 
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with 
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 (26) 

2.2.2 MM model 

The same procedure is adopted for the case of the MM model to derive the effective 

medium. If the homogenized medium has the sample rheological behavior (i.e., MM), it 

should satisfy the following condition: 
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p
S 



 
   

 
 (27) 

The best approximation of the apparent rigidity 
*

_ cMM d  in short and long terms gives: 
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And for other parameters, the MM model gives: 
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The MM model gives the effective Young and shear moduli: 

1 4
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3. THE INTERFACIAL LAWS 

The interface law links the stress vector to the jump of the displacement across the crack 

via a diagonal matrix.  Since the joint is soft and has a very small thickness, it can be replaced 
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by an interface law defined along the limit surface. Its mechanical behavior can therefore be 

obtained by asymptotic techniques where the thickness of the joint tends to zero. Having the 

interface law, the hybrid structure problem can be solved by the finite element method. 

Therefore, the terms NC  and TC  that correspond to the normal and tangential jumps of the 

displacement, are given by (for more details, see [18]): 

                                                    3333 1313

0 0
lim , limN T
e e

C C
C C

e e 
   (35) 

in which e   is the thickness of the micro-cracked EM material.  

Noting that S the area of the surface, 
3

3c
c

N a
d Na

S
  with the number of cracks per unit of area 

in the case of 2D structure. 

A combination of (6), (12), (16), (25), (33), and (35) yields the expressions for the 

interface stiffnesses ,N TC C   of Burger and MM models for two considered cases. 

Case of isotropic cracks: 
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Case of transversely isotropic cracks: 
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4. DISCUSSION OF THE PROPOSED NONLINEAR INTERFACIAL LAW 

The expressions (36) - (41) show that ,N TC C  depend not only on the time, but also on the 

crack density .cd  In order to discuss the evolution of the interface properties, the concrete 

described by Burger model and the hybrid mortar represented by MM model are considered in 

this section. The properties of these two materials are given in Table 1 [30]. 

Table 1. The effective properties of hybrid mortar with 
0.0cd 

 

Model 
 e

M c
k d

(MPa) 

 e

M c
μ d  

(MPa) 

  s

M c
d  

(MPa.s) 

  d

M c
d  

(MPa.s) 

 e

K c
k d

(MPa) 

 e

K c
μ d

(MPa) 

  s

K c
d  

(MPa.s) 

  d

K c
d  

(MPa.s) 

 e

R c
k d  

(MPa) 

 e

R c
μ d

(MPa) 

Burger 2404 1655 3.35 108 1.54 108 1257 866 3.43 106 1.57 108 - - 

MM 2404 1655 3.35 108 1.54 108 - - - - 1257 866 

Figures 4-7 present the dependence of the normal and tangential stiffnesses of the 

interface on time. The MM model shows a dramatically decrease followed by a constant 

asymptote. The stiffnesses predicted by the MM model reach the asymptotic limit after t ~ 5 

days for the isotropic distribution of cracks and t ~ 2.5 days for the parallel distribution of 

cracks. The Burger model exhibits a rapid decrease during ~2.5 days followed by a 

progressive decrease of the stiffnesses. 

 

Figure 4. The normal stiffnesses of the interface for Burger and MM models, case of isotropy crack 

distribution  0.1 .cd   

 
Figure 5. The tangential stiffnesses of the interface for Burger and MM models, case of isotropy crack 

distribution  0.1cd  . 
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Figure 6. The normal stiffnesses of the interface for Burger and MM models, case of transversely isotropy 

crack distribution  0.1cd  . 

 
Figure 7. The tangential stiffnesses of the interface for Burger and MM models, case of of transversely 

isotropy crack distribution  0.1cd  . 

As a function of crack density, both Burger and the MM models depend strongly on cd and 

tend rapidly to zero when cd  increases (see Figs. 8-11). In almost all cases (except / /

TC at t = 0s 

case of transversely isotropy crack distribution), the MM model gives the values of  ,N TC C
 

higher than that of the Burger model. When the crack density is high ( 0.15),cd  both ,N TC C  are 

very low and no distinct difference between the Burger and MM models can be seen. 

Comparing Fig. 8 with Fig. 6, and Fig. 9 with Fig. 7 one can see that ,N TC C  in the case of 

transversely isotropic cracks are lower than the ones in case of isotropic cracks. 

 

Figure 8. Evolution of the normal stiffnesses of the interface as a function of crack density cd  for 

Burger model (continuous line) and MM model (dash-line), case of isotropy crack distribution. 
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Figure 9. Evolution of the tangential stiffnesses of the interface as a function of crack density cd  for 

Burger model (continuous line) and MM model (dash-line), case of isotropy crack distribution. 

 

Figure 10. Evolution of the normal stiffnesses of the interface as a function of crack density cd  for Burger 

model (continuous line) and MM model (dash-line), case of transversely isotropy crack distribution. 

 

Figure 11. Evolution of the tangential stiffnesses of the interface as a function of crack density cd  for Burger 

model (continuous line) and MM model (dash-line), case of transversely isotropy crack distribution. 

5. CONCLUSIONS 

This study describes the procedure to identify the viscoelastic interfacial laws for hybrid 

structures.  In such a structure, the more solid material is assumed to be undamaged and 

elastic, while the weaker material is viscoelastic. The interface between them behaves 

similarly to the weaker material Analytical expressions describing the interfacial laws are 

derived by using two rheological models: Burger and Modified Maxell. The applications of 

these two models for the case of hydric mortar are discussed.  It is shown that the normal and 
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tangential stiffnesses of the interface depend not only on the time but also strongly on the 

crack density. The MM model leads to a finite asymptotic limit for the values of (t), ( )N TC C t  

while these coefficients vanish after several days with Burger’s predictions. Besides, there is 

no distinct difference between Burger and MM models in the case of assuming the same high 

crack density in the interface (i.e., dc ≥0.15), and the values of ,N TC C  are very low. The 

advantage of non-linear interfacial law characterized by ,N TC C  consists in the independence 

of the number of elements used in the interface. Therefore, this is a good solution to model the 

effective viscoelastic behavior of the hybrid structure thanks to a low numerical cost. The 

established formulations from this study for the normal and tangential stiffnesses can be 

applied to the analysis of multi-layered systems exhibiting either elastic or viscoelastic 

behavior. In a future study, the relevance of the proposed method needs to be evaluated by 

comparing the numerical results with the test data. 
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