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Abstract. Cables in cable-stayed bridges have low intrinsic damping, and dampers are often 

used as a countermeasure for cable vibration control. This paper presents an innovative 

asymptotic formula for calculating the additional damping in stay cables equipped with Negative 

Stiffness High Damping Rubber dampers (NS-HDR). The NS-HDR damper incorporates 

negative stiffness through a pre-compressed spring. The analysis employs models of flexural 

cables with fixed-fixed or hinged-hinged ends to derive the formulation of attainable damping 

ratio. The results of the study reveal that the NS-HDR damper, with its negative stiffness feature, 

exhibits a significantly higher added damping ratio in comparison to the conventional HDR 

damper configuration. To quantify this increased added damping resulting from negative 

stiffness, a modification factor is proposed. The accuracy and effectiveness of the proposed 

damping formula are successfully validated using the Finite Difference Method (FDM). 

Subsequently, the methodology is applied to design the damping of two existing stay cables 

(137.82m and 167.18m in length). Field measurements reveal that the damping in these cables 

falls below the required threshold of 0.5%. The proposed NS-HDR damper offers a viable 

solution to achieve the required damping ratio. These findings contribute significantly to the 

understanding and optimization of damping in stay cables employing HDR dampers, presenting 

potential applications in the field of bridge engineering. The research opens up new possibilities 

for enhancing vibration control and safety in cable-stayed bridges. 

Keywords: Negative stiffness HDR damper (NS-HDR); damping ratio; modification factor; 

field measurement. 
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1. INTRODUCTION 

Cable systems in cable-stayed bridges are becoming more flexible, lighter and less damped, 

resulting in cables being more susceptible to various vibration sources, such as rain-wind 

induced vibration, vortex shedding, or support motions [1]. Cables without vibration controls are 

low-damped structures with inherently low damping ratios [2]. Gimsing and Georgakis [3] have 

highlighted that the inherent damping ratio of stay cables typically ranges from 0.01% to 0.20%, 

while the Post-Tensioning Institute Cable-Stayed Bridge Committee [4] has recommended, in 

their Guide Specification, a cable damping ratio (ξ) between 0.5% and 1.0% to effectively 

mitigate rain-wind induced vibration. Consequently, external dampers are frequently 

incorporated into cables to provide additional damping. 

Pacheco et al. [2] proposed a universal estimation curve for the attainable damping in a taut 

cable with a single viscous damper, providing a convenient tool for cable damping design. Krenk 

[5] presented an asymptotic form of the added damping in a taut cable. Main and Jones [6, 7] 

subsequently addressed the limitations regarding the restriction on damper locations and 

vibration modes. In addition to these analytical solutions, Tabatabai and Mehrabi [8] introduced 

the Finite Difference Method to solve the eigenvalue equation containing the natural frequency 

and overall damping of a cable. 

Measurements of damping in actual cables have demonstrated lower values compared to the 

expected ones. Recently, there has been a growing interest in studies focusing on passive 

vibration control using a novel negative stiffness damper (NSD) to enhance damper 

performance. Chen et al. [9] introduced a NSD for cable vibration control, where the NSD was 

constructed with a pre-compressed spring and a viscous damper. Zhou and Li [10] developed a 

NSD consisting of two compressed springs and an oil damper mounted on a taut cable. Other 

works exploring the vibration control and dynamic behavior of stay cables utilizing NSDs have 

been conducted, as seen in[11-13]. 

Conventional High Damping Rubber (HDR) dampers have been widely utilized for the 

vibration control of cables due to their advantages. However, the measured damping of HDR 

dampers often falls below theoretical values, indicating insufficient performance. To address this 

issue, this paper proposes the implementation of a Negative Stiffness High Damping Rubber 

(NS-HDR) damper to enhance damper efficiency. The damping formulation is derived using an 

asymptotic solution, and the improvement in added damping resulting from the negative stiffness 

is demonstrated through a proposed modification factor. Cable models with fixed-fixed ends or 

hinged-hinged ends are investigated and discussed. Additionally, a numerical approach known as 

the Finite Difference Method (FDM) is introduced to verify the analytically proposed damping 

formulation. 

2. SCHEMATIC DIAGRAM 

Two models of a stay cable with a negative stiffness HDR damper, namely a fixed-fixed end 

cable and a hinged-hinged end cable, are illustrated in Figs. 1(a) and 1(b) respectively. The cable 

has length l, tension T, flexural rigidity EI, and mass per unit length m. Tabatabai and Mehrabi 

[8] have pointed out that for the range of parameters involved in most stay cables, the influence 

of cable sag is insignificant whereas the cable bending stiffness can have a significant influence 

on the resulting cable damping ratios. For simplicity, cable sag is neglected in this analysis. 
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Figure 1. Cable models with a NS-HDR damper: a) fixed end cable; and b) hinged end cable. 

A negative stiffness HDR damper is installed on the cable at the location y  a, and it is 

comprised of a combination of a conventional HDR damper and a pre-compressed spring. The 

conventional HDR damper is characterized by a damper spring factor K and a material loss 

factor φ. The spring has a free length l0, an initial compressed length l1, and a stiffness Ks. It is 

important to note that the spring is compressed to a certain extent to ensure that it remains in a 

compressed state during cable vibration. Due to this compression, the spring releases force to aid 

cable motion, rather than resisting it, as depicted in Fig. 2. 
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Figure. 2. Dynamic state of NS-HDR damper. 

Force in the conventional HDR damper as 

 
(1) 

where i2 = 1; and va(t) is the displacement of the cable at y  a. 

Force in the spring as 

 

(2) 

Force produced by the NS-HDR damper system is the vertical component of the force 

equilibrium equation. 

 
(3) 

where 

 

(4) 

Eq. (3) is applied to a parallel configuration. In this parallel spring arrangement, each spring 

is connected to the same support structure at one end, with their opposite ends connected to a 

common point at the damper location. Substitution of the HDR damper force from eq. (1) and 

spring force from eq. (2) into eq. (3) gives 
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(5) 

This force of the NS-HDR damper system is nonlinear with respect to variable va(t). This 

nonlinear behaviour occurs as the nonlinearity of the time-varying spring force. A damper, 

however, is often installed close to one cable end leading to small displacements va(t) at a 

damper location. Also, by considering the compressed length of the spring l1  va(t), eq. (5) can 

be linearly approximated as  

 
(6) 

where l  l0  l1 denotes the initial deformation of the compression spring. Chen et al. [9] 

investigated a negative stiffness viscous damper installed to a taut cable and pointed out that the 

nonlinear behaviour of the damper could be neglected for the practical configurations of the 

damper-cable system, and the linear approximation of the spring force was sufficiently accurate 

for damping evaluation. Denoting KNS   Ksl/l1, eq. (6) becomes 

 
(7) 

For the free vibration of a cable, the damper force and its displacement are in the harmonic 

form as 

 
(8a,b) 

where  is the complex natural circular frequency of the cable; 
av is the transverse 

amplitude of the cable mode shape at y  a; and FNSD is the time-independent component of the 

damper force. On making use of eqs. (8a, b), eq. (7) yields 

 
(9) 

where Keq  K(1  ) and eq  /(1  ) characterize the equivalent spring factor and 

material loss factor of the HDR damper, respectively; 
NSK  (KNS  a)/T and  K   (K  a)/T are 

the nondimensional forms of KNS and K, correspondingly; and  . 

3. DERIVATION OF ADDED DAMPING 

Because of low inherent damping characteristics, the cable is considered as an undamped 

structure, the equation of motion of in-plane free vibration for each cable segment, 0  y  a− and 

a+  y  l is derived as 

 
(10) 

where v(y,t) is the transverse displacement of the cable. Noted that a- means the left-hand 

side of cable’s cross section at damper location while a+ denotes the right-hand side of cable’s 

cross section at damper location. 

 (11) 
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Inserting eq. (11) into eq. (10) leads to 

 
(12) 

where η  EI/Tl2 is the dimensionless cable bending stiffness; and /m T =  characterizes 

the wave number. By solving eq. (12), the mode shape of each cable segment is obtained as 

shown in eq. (13) and eq. (14). 

For 0  y  a−: 

 (13) 

For a+  y  l: 

 (14) 

where  

    (15) 

and C1 to C8 are constants. These constants from C1 to C8 of the cable mode shapes as well 

as its formulation of the nth complex eigenfrequency n can be determined by satisfying the 

boundary conditions at the cable ends and continuity conditions at the damper location y  a. 

The result of eigenfrequency formula is shown as  

 
(16) 

in which  is the boundary condition index with  = 0 for a hinged-hinged end cable and 

  = 1 for a fixed-fixed end cable, respectively. 

       (17) 

                                  (18) 

 

 

The complex frequencies n of the cable vibration can be determined by solving eq. (16) 

directly. These frequencies are complex in which the imaginary component represents the modal 

damping ratio [5] as 



Transport and Communications Science Journal, Vol. 75, Issue 1 (01/2024), 1201-1215 

1203 

 

 (21) 

where n is the damping ratio of the nth mode; and n  is the frequency magnitude of the nth 

mode. After obtaining n from eq. (16), the damping ratio n can be deduced using eq. (21) as 

Im[ ]n
n

n





=  (22) 

3.1. Asymptotic Approach 

The purpose of the asymptotic solution is to approximate such trigonometric and hyperbolic 

functions appeared in eq. (16), which will result in an explicit form of n. The added damping 

ratio then can be deduced from eq. (22). This asymptotic approach assumes that the perturbation 

of the wave numbers n between a flexural cable with a damper and a nonflexural cable without 

a damper is relatively small. Referring to the author’s previous publications for the details of 

asymptotic solution [14, 15]. As a result of the approximation of Eq. (16), the asymptotic 

complex frequency formula is subsequently derived as 

                                         (23) 

where  = wave number;  = wave number of taut-string cable. 

; and  (24a,b) 

; and  (25a,b) 

On making use of eq. (23), damping ratio can be derived from eq. (22) as 

 

(26) 

Substitution of the damper force FNSD from eq. (9) into eq. (26) results in the modal damping 

ratio as 

 

(27) 

The maximum modal damping ratio and its optimal damper coefficient as 

 at  (28a,b) 

in which  and  are the modification factors 

of the damper coefficient and its damping ratio due to cable bending stiffness associated with 

types of boundary conditions at cable ends ( = 0 for hinged-hinged ends, and  = 1 for fixed-

fixed ends); ; ;  = ; R = /( );   and  are 

the modification factors of the damper coefficient and its damping ratio due to the negative 

stiffness, which are defined as 
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The allowable range of the dimensionless negative stiffness values  is determined based 

on mathematical conditions that the modification the factors  and  must be positive. From 

which, 

 
(30) 

The complex eigenfrequencies by exact solution eq. (16) and by asymptotic solutions eq. 

(23) are normalized and plotted with different values of the negative stiffness. The results are 

shown in Fig. 3 for fixed-fixed end cable and Fig. 4 for hinged-hinged end cable, respectively.  

  

Figure 3. Complex wave number with different negative stiffness  for fixed-fixed end cable. 

  

Figure 4. Complex wave number with different negative stiffness  for hinged-hinged end cable. 

Figs. 3 and 4 show a good agreement between the exact and asymptotic solution. The 

discrepancies between the exact solution and asymptotic solution are characterized by n. Figs 

3 and 4 pointed out that the increase in the negative stiffness caused the decrease in the wave 

number and its cable frequency accordingly. Consequently, a cable-damper system will be 
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unstable in the existence of negative stiffness if the natural frequencies of cables approach to 

zero.  

3.2. Numerical Approach by Finite Difference Method (FDM) 

In addition to the presented asymptotic approach, a numerical solution by the FDM is 

developed in this section as a parallel solution for the verification of the proposed damping 

formulation. A cable with a length l is discretized into N elements along the cable with n internal 

nodes (n = N  1). Each element has an equal length of a1. Cable natural frequencies and its 

damping ratios can be determined by solving the subsequent matrix formulation. 

                                        (31) 

where ,  and  are the stiffness, damping and mass matrices of the discretized 

cable;  is the mode shape vector of nodal displacements;   is the 

complex number related to the damping ratio  and undamped natural circular frequency . 

These matrices have size of n × n. Since this section aims to verify the proposed damping 

formula in the preceding section, the matrices appeared in eq. (31) will be modified to contain 

only characteristics of a stay cable attached by a NS-HDR damper. For that purpose,  is a zero 

matrix since the inherent damping is relatively small and neglected. Mass matrix  as 

                                           (32) 

where mi is the mass per unit length at node i. Stiffness matrix  as 

                                                       (33) 

where  is the stiffness matrix due to cable bending stiffness EI and static cable tension 

T; and  is the stiffness matrix due to NS-HDR damper. Stiffness matrix  as  

 

(34) 

 

where ; and  is the boundary condition index (7 or 5 for fixed ends or hinged 

ends, respectively). In this study, because a negative stiffness HDR damper is installed to the 

cable at the damper location, the stiffness matrix  will contain only one non-zero element 

corresponding to the node where the negative stiffness HDR damper is mounted to the cable.  

From which,  

                                (35) 

After having these matrices available, eq. (31) can be solved and the damping ratio  will be 

obtained accordingly.  
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(36) 

Comparisons between the asymptotic solution and FDM about the natural frequencies and 

damping ratios in some real cables are presented. The cable properties and damper 

characteristics are shown in Table 1. Table 2 shows the natural frequencies and damping ratios 

for the fixed-fixed end cables while Table 3 shows the results for the hinged-hinged end cables. 

In both tables, the natural frequencies and damping ratios by the proposed asymptotic solution 

agreed well with the results by the FDM, with an error of 2% on average for damping ratios and 

less than 1% for frequencies.   

Table 1. Cable properties and damper characteristics. 

Cable 

No. 

Cable properties  Negative stiffness HDR Damper  

Cable 

length 

l (m) 

Mass per 

unit length 

m (kg/m) 

Bending 

stiffness  

EI (N.m2) 

Tension 

T (N) 
 

Damper 

location  

a (m) 

Spring 

factor  

K (N/m) 

Loss 

factor 

 

Negative 

stiffness 

KNS (N/m) 

C1 137.82 68.4 2.73 × 106 3.45 × 106  4.54 644 × 103 0.62 -300 × 103 

C2 127.47 68.4 2.73 × 106 4.26 × 106  4.37 644 × 103 0.62 -300 × 103 

C3 167.18 64.3 2.34 × 106 3.10 × 106  5.54 563 × 103 0.62 -300 × 103 

C4 184.72 60.2 1.98 × 106 3.20 × 106  5.85 483 × 103 0.62 -300 × 103 

C5 167.18 64.3 2.34 × 106 3.18 × 106  5.54 563 × 103 0.62 -300 × 103 

C6 184.72 60.2 1.98 × 106 3.67 × 106  5.85 483 × 103 0.62 -300 × 103 

Table 2. Comparisons between asymptotic solution and FDM for fixed-fixed end cables. 

Cable 

No. 

Asymptotic solution  Finite Difference Method (FDM) 

Frequency f (Hz)  
Damping 

ratio  (%) 
 Frequency f (Hz)  Damping ratio  (%) 

f1 f2 f3  1 = 2 =3  f1 f2 f3  1 2 3 

C1 0.834 1.667 2.500  0.596  0.833 1.668 2.504  0.595 0.596 0.596 

C2 0.999 1.997 2.996  0.563  0.999 1.998 3.000  0.559 0.558 0.557 

C3 0.671 1.341 2.011  0.708  0.671 1.342 2.014  0.743 0.745 0.747 

C4 0.635 1.269 1.904  0.723  0.634 1.269 1.904  0.721 0.721 0.721 

C5 0.679 1.358 2.037  0.704  0.679 1.359 2.040  0.739 0.740 0.739 

C6 0.679 1.358 2.037  0.688  0.679 1.358 2.037  0.684 0.684 0.683 

Table 3. Comparisons between asymptotic solution and FDM for hinged-hinged end cables. 

Cable 

No. 

Asymptotic solution  Finite Difference Method (FDM) 

Frequency f (Hz)  
Damping 

ratio  (%) 
 Frequency (Hz)  Damping ratio  (%) 

f1 f2 f3  1 = 2 =3  f1 f2 f3  1 2 3 

C1 0.827 1.653 2.480  0.784  0.826 1.653 2.482  0.780 0.782 0.784 

C2 0.990 1.980 2.970  0.746  0.989 1.980 2.972  0.737 0.738 0.738 

C3 0.666 1.332 1.999  0.867  0.666 1.333 2.001  0.898 0.900 0.905 

C4 0.631 1.262 1.893  0.875  0.631 1.262 1.893  0.869 0.869 0.871 

C5 0.675 1.349 2.024  0.862  0.675 1.350 2.026  0.892 0.894 0.899 

C6 0.675 1.351 2.026  0.830  0.675 1.350 2.025  0.822 0.822 0.822 

The investigation into the effect of a NS-HDR damper on the increase in the added damping 

was subsequently implemented, in which a cable with properties T = 3 × 106 N, l = 100 m, and m 

= 78.3 kg/m was used. A NS-HDR damper with the material loss factor φ = 0.25 was 

transversely attached to cable at the location a/l = 0.02.  Figs. 5(a)-(b) investigates the damping 

curves versus the HDR damper coefficient  for a fixed end cable with small bending stiffness 

( = 1  10-6) and large bending stiffness ( = 1  10-4), respectively.  
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(a) 

 
(b) 

Figure 5. Damping curves with different values of  for a flexural cable with fixed ends: (a) small 

bending stiffness ( = 1  10-6); and (b) large bending stiffness ( = 1  10-4). 

As they appeared, the modal damping ratio calculated by the asymptotic solution matched 

well with those by the numerical approach, holding the threshold discrepancies of 2.3 % and 

3.1% for a small and lager bending stiffness cable, correspondingly. Compared to a conventional 

HDR damper (  = 0), a negative stiffness HDR damper (  < 0) generated superior 

supplemental damping to the cable. The comparisons about damping ratios between a 

nonflexural cable, flexural cable with fixed ends and flexural cable hinged ends were also 

investigated and plotted in Fig. 6  

  

(a) (b) 
Figure 6. Comparison of the maximum damping ratios between a nonflexural cable, flexural cable with 

fixed ends and hinged ends. 

As can be seen in Fig. 6, the increase in the negative stiffness  (more negative) led to an 

increase in the maximum added damping ratio, and this increase was much faster for a 

nonflexural cable than that of a flexural cable. Moreover, the increase in the negative stiffness 

 (more negative) also resulted in larger discrepancies about damping between these three 

cable models.  
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4. A CASE STUDY 

This section aims to demonstrate the design of the NS-HDR damper for a targeted set of 

cables belonging to an existing cable-stayed bridge. The bridge has a length of 600 m, and the 

cable lengths vary from 100 m to 200 m, with the height of the main towers around 127 m. To 

mitigate cable vibrations, HDR dampers were already attached to the cables of the bridge. Fig. 7 

provides an overview of the bridge, highlighting the cables chosen for the design example. The 

properties of these selected cables are summarized in Table 4 and a flowchart of design is 

displayed in Fig. 8. 

 
Figure 7. The bridge layout. 

Table 4. Properties of the selected cables and attached HDR damper. 

Cable

s 

Cables  HDR damper 

l (m) m (kg/m) EI (N.m2) T (N)  a (m) K (N/m)  

C01 137.82 68.40 2.73E+06 3.57E+06  4.54 6.44E+05 0.62 

C17 167.18 64.30 2.34E+06 3.34E+06  5.54 5.63E+05 0.62 

 
Figure 8. Flowchart of NS-HDR damper design. 

 

In order to determine the necessary parameters for NS-HDR damper design, full-scale 

measurements of cable vibrations were presented as a design example. Vibration data were 

sampled by the accelerometers at a sampling frequency of 1000 Hz. The transducer was 

strategically placed at 7.719 m from the anchor for cable C01 and 8.797 m for cable C17. The 
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chosen excitation method involved using a rope to pull and release, creating a controlled and 

repeatable excitation for the cables. The fundamental natural frequency and damping of the 

cables were extracted from the vibration signals. Fig. 9 displays the raw vibration data of the 

cables. The determination of cable natural frequency and cable damping ratio involves four 

steps, as illustrated in Fig. 10, using the measured vibration data. 

 
Figure 9. Raw cable acceleration data: a) Cable C01; b) Cable C17. 

 

 

Figure 10. Procedures for the determination of measured frequency and measured damping.  

 

The first step is to extract the free-decay response from measured vibrations. The second 

step involves performing spectrum analysis in the frequency domain (frequency domain 

analysis). In this step, the free vibration in the time domain is transformed into the frequency 

domain using Fast Fourier Transform (FFT) analysis [16]. The measured natural frequencies of 

cables are then extracted from the prominent peaks of the frequency spectrum. Fig. 11 displays 

the frequency domain analysis results of the measured data for cables C01 and C17 using FFT 

analysis. The third step is to filter free-decay response. A bandpass Butterworth filter [17] is used 

to eliminate noise and to disregard unwanted vibration modes from the raw data. The last step is 

to determine measured damping ratio using the natural logarithm graph [18] of the decay 

amplitudes. 

 

(37) 

where  and  are the amplitudes of the filtered free-decay responses at the  and 

 peaks, respectively; and  is the logarithmic decrement. Fig. 12 shows filtered free-decay 

responses of the cables C01 and C17, and damping ratio is obtained from the decay curve of the 

response. As a result, Table 5 summarizes the measured cable damping and measured cable 

natural frequencies.  
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a) b) 

Figure 11. Frequency identification using FFT: a) cable C01; b) cable C17. 

  
a) b) 
Figure 12. Damping identification: a) cable C01; b) cable C17. 

Table 5. Measured natural frequency and measured damping ratio  of the cables. 

Cables  1st Natural frequency f (Hz)  1st Damping ratio   (%) 
C01  0.828  0.476 
C17  0.682  0.428 

Table 6. Design of NS-HDR damper. 

Cable 

 Input Output 
 Required 

damping  
  (%) 

( )     K  

Negative 
stiffness 

KNS (kN/m) 

C01  0.5 0.033 1.0 4.1710-5 0.708 0.915 0.847 160.0 

C17  0.5 0.033 1.0 2.6410-5 0.768 0.930 0.984 90.9 

The measured damping ratios of cable C01 and C17 are 0.48% and 0.43%, respectively. 

However, according to PTI[4], a damping ratio between 0.5% and 1.0% would be sufficient to 

suppress rain-wind induced vibrations. The current HDR damping, in fact, provides damping less 

than 0.5%. Therefore, the NS-HDR damper proposed in this study will be designed to achieve 

the required damping of 0.5%. The purpose of this case study is to determine the negative 

stiffness value that needs to be added to the current HDR damper to create NS-HDR damper, 

which will generate a damping value of 0.5%. For this purpose, the proposed damping 

formulation, eq. (27), is used, and the results are summarized in Table 6. The table shows that a 
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negative stiffness of 160 kN/m and 90.9 kN/m should be installed to the current HDR damper to 

achieve the desired 0.5% damping for cables C01 and C17, respectively. 

In this example, the negative stiffness component is specifically engineered to increase the 

added damping ratio to 0.5%. Within the NS-HDR damper model, it’s crucial to emphasize that 

the damping ratio remains consistent across all vibration modes for cable model without sag 

consideration. In simpler terms, the additional damping supplied by the NS-HDR damper in the 

2nd and 3rd modes is identical to that in the 1st mode, ensuring uniform damping across all 

modes. 

5. CONCLUSIONS 

The contributions and prominent points obtained throughout this study are as follows: 

▪ An explicit formulation of the modal damping ratio for a stay cable with a NS-HDR damper 

are derived for a flexural cable with fixed-fixed ends or hinged-hinged ends. The effect of 

negative stiffness on the damping ratio is presented through a proposed modification factor. 

This factor means the modification of the added damping compared to the conventional HDR 

damper.  

▪ In the presence of negative stiffness, the NS-HDR damper generates superior added damping 

to the cable. For cables with the same boundary conditions, the small bending stiffness cables 

received more benefit from negative stiffness than that of the large stiffness cables. For cables 

with the same flexural rigidity but different boundary conditions, the hinged-hinged end 

cables pose higher damping than that of the fixed – fixed end cables.  

▪ The increase in negative stiffness leads to an increase in the achievable damping, and this 

damping increment is much faster for a nonflexural cable (taut-string cable) than that of a 

flexural cable. 

▪ A NS-HDR damper yields a peak on the damping curve which is always shifted to the left-

hand side of an original peak, leading to a smaller size of the designed HDR damper (smaller 

spring factor K). The original peak means the peak of the damping curve corresponding to a 

conventional HDR damper without negative stiffness. 

▪ A numerical solution by the Finite Difference Method (FDM) is introduced to verify the 

analytical damping formula. It showed a good agreement between the two approaches.  

▪ As a practical example, a case study was presented, focusing on the damping of cables 

(137.82m and 167.18m in length), where the measured damping ratios were found to be 

smaller than 0.5%. To address this issue, the NS-HDR damper has been specifically designed 

for these cables to achieve the desired damping ratio of 0.5%. 
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