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Abstract. In recent years, the prediction of the effective transport properties have received a 

great number of investigations. The present work is dedicated to determining the effective 

permeability of two-dimensional (2D)  doubly porous materials made of an isotropic 

permeable solid matrix in which elliptical shaped pores of any size are embedded. At the 

interface between the fluid and the solid, the Beaver–Joseph–Saffman conditions are applied. 

To achieve this objective, the Boundary Element Method (BEM) is first elaborated in the 

simulation of velocity and pressure solution fields of two coupled Stokes and Darcy problems. 

Afterwards, with the help of this solution results, the effective permeablity of the doubly 

porous material under investigation can be determined. For the purpose of assessing the 

accuracy and convergence of the BEM solution, the results obtained for the velocity and 

pressure fields are compared with the ones provided by the finite element method (FEM). 

Finally, several numerical examples are carried out to analyze the fluid/solid interface 

influence, the effect of area fraction and geometrical properties of pores, such as the size and 

distribution of the pores within the matrix phase.  

Keywords: BEM, effective permeability, double porosity, coupled Stokes-Darcy problem, 

fluid-filled inclusion. 
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1. INTRODUCTION  

Most of natural and artificial materials such as soil, rock, concrete etc. can be naturally 

considered as doubly porous media. For example, in fractured concretes, the first level 

porosity consists of small-scale intergranular pores whereas the larger scale fractures and 

cavities lie so that to the second porosity level. In dealing with this kind of materials, the 

prediction of the effective transport properties have attracted a great number of investigations 

of the research community in recent years. In the present paper, we focus on the determination 

of the macroscopic permeability of doubly porous media containing saturated pores. Here, the 

domain under consideration is modeled by a host solid matrix in which nonconnected fluid-

filled inclusions of elliptical shape are randomly distributed and orientated. In the host matrix, 

the flow is described by the Darcy equation while in the pores inclusions the fluid flow does 

not obey Darcy’s law, rather, it is governed by Stokes equation. Thus, with the purpose to 

estimate the macroscopic permeability of doubly porous materials, we need to solve the 

coupling Stokes-Darcy flow problem in which the fluid-solid interface conditions are 

described by Beaver–Joseph–Saffman equations [1,2].  

There are various approaches for determining the permeability of porous materials 

reported in the literature. This includes homogenization methods based on asymptotic 

expansion [3,4] or on volume average method applied to random microstructure [5]. When the 

microstructure of porous materials becomes complex, the classical numerical approach based 

on the finite element method [6-10] or fast Fourier transform [11-13] can be applied to 

compute the macroscopic permeability. In the present work, the flow and transport process 

through porous media under consideration is simulated by the Boundary Element Method 

(BEM). Note that in this numerical method, the velocity and pressure solution fields are 

presented in terms of integrals, involving the unknown tractions, velocities, pressures and 

fluxes over the external boundary and interfaces (also called boundary/interface values). 

These boundary values are then obtained by solving a system of linear equations, which 

results from matching the prescribed external boundary and fluid/solid interfaces conditions. 

It is well-known that singular integrals are a difficulty needed to overcome when using the 

BEM. In this work, these singular integrals are evaluated analytically. 

The remaining sections of this paper are structured as follows. Section 2 is dedicated to 

specifying the setting of the problem under investigation. Precisely, the local governing 

equations, the description of the interface conditions, the macroscopic constitutive equations 

are given and then the coupled Darcy–Stokes problem of a fluid flowing through a porous 

medium is numerically solved by BEM. In Section 3, some examples are given to numerically 

illustrate the velocity and pressure solution fields within the computational domain and to 

show the dependence of the effective permeability on the interfacial parameter, on the 

geometrical properties and area fraction of pore inclusion. Finally, the work closes in Section 

4 with a few concluding remarks. 

2. PROBLEM SETTING 

The doubly porous material under consideration is assumed to be formed of a solid 

matrix phase in which the fluid-filled pore inclusions of elliptical shape are scattered 

throughout. The domain occupied by a representative area element (RAE) of this material is 

denoted by . More precisely, we designate by  and  the subdomains 

of  occupied by the solid phase and the i-th pore (see Fig. 1). The interface between the solid 
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phase and the fluid-filled inclusion phase is symbolized by . In addition, the fluid flow 

within the RAE is generated by a uniform prescribed pressure gradient at infinity 

, here  and  stands for the angle between the pressure 

gradient vector  and the x-axis.  

  
Figure 1. Representative Area Element of doubly porous media. 

Now and hereafter, it is important to notice that all the local governing equations in this 

work will be expressed in the dimensionless forms by the help of choosing  and 

 as the length, velocity, permeability, pressure gradient and pressure, respectively. Where  

denote the dimension of RAE and μ designates the viscosity of the fluid. The fluid flow inside 

the pores is assumed to be incompressible, steady and governed by the following Stokes 

equations 

 

where  và  are the velocity and pressure fields of the fluid in the pores . 

The solid matrix subdomain of the doubly porous material under consideration is 

assumed to be homogeneous and isotropic. Thus, the fluid flow through the latter complies 

with the Darcy’ law as follows 

 

where  and  are, respectively, the fluid velocity and pressure fields within 

the solid subdomain and  denotes its permeability. 

The interfacial conditions at the fluid/solid interface  can be described by using the 

Beavers–Joseph–Saffman conditions [1, 2] 
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Above,  is the outward unit vector normal to  while  stands for the unit tangential 

vector,  denotes the Cauchy stress tensor in the Stokes subdomain and  is slip coefficient. 

The velocity and pressure solution fields of the coupled Darcy–Stokes problem will be 

determined by using an approach based on the BEM, sometimes called also the boundary 

integral method. These solution fields can be expressed as four following integral 

formulations 

 

 

 

 

where  and  are the constants dependent on the position of the source point  given by 

 

Above, , , ,  are the unknown traction, velocity, flux and pressure at the 

field point  lying on the internal interface  and external boundary ; , , , , ,  are 

the Stokeslet, the third-order stress Green’s tensor, the pressure vector associated with the 

Stokeslet, the second-order pressure tensor associated with the stresslet, the fundamental 

solution for the pressure and flux, respectively. For more details about these Green’s 

functions, the reader can refer to the books of Pozrikidis [14] and Katsikadelis [15]. 

At the macroscopic scale, the doubly porous material under investigation is assumed to 

be statistically homogeneous. Thus, its effective behavior is characterized by the following 

macroscopic Darcy’s equation 

 

with 

 

Where,  stands for the effective permeability tensor of the RAE; , denote the 

macroscopic velocity and pressure gradient, they are determined by 
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and 

 

with  is external boundary of ,  designate the outward unit vector normal to , 

while S denotes the area of RAE.  

3. NUMERICAL EXAMPLES, COMPARISONS AND DISCUSSION 

In this section, the methods elaborated in the previous sections are now applied to study 

several examples. We numerically calculate in the first example the velocity and pressure 

fields of porous materials containing nonconnected pore inclusions of elliptical shape 

randomly distributed (see Fig. 2). Notice that the fluid flow through the RAE by an applied 

pressure gradient of intensity  along the x-direction. In addition, the slip coefficient  is 

set to be equal to 0 and the normalized permeability of the host matrix is chosen such as 

. 

 
Figure 2. Position’s line for the computations of velocity and pressure 

We show, in Figs. 3 and 4, the variation of the normalized fluid velocity and pressure for 

points located on the line  (see Fig. 2). The values obtained by BEM for velocity 

and pressure then compared with the corresponding ones provided by FEM via Comsol 

Multiphysics software. With the help of Comsol Multiphysics, the computational domain was 

first discretized using 43914 triangular elements with 22149 mesh points as shown in Fig. 3. 

Plot of pressure solution field is shown in Fig. 4. A very good agreement between these 

results can be observed from Figs. 5 and 6. 
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Figure 3. Discretization of computational domain. 

 

Figure 4. Pressure solution field. 
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Figure 5. Variation and comparison of the normalized velocity field on the line y=-0.1. 

 

Figure 6. Variation and comparison of the normalized pressure field on the line y=-0.1. 

The second example is related to a porous material consisting of a host solid matrix in 

which elliptical fluid-filled inclusions of arbitrary sizes are inserted. Using the Eq. (11) 

together with Eqs. (13) and (14), we show in Fig. 7 the corresponding estimate for the 

normalized effective permeability  versus area fraction  of inclusions. It can be seen 

from Fig. 7 that the effective permeability augments with the increase of the area fraction.  

Finally, to illustrate the influence of the slip coefficient, the geometrical properties and 

the area fraction of pore inclusion on the effective permeability, we consider, in the third 

example, doubly porous materials consisting of a solid matrix phase containing identical 

fluid-filled inclusions whose the shape is elliptical. In this example, three cases with the slip 

coefficient ,  and  are studied. For each case, the area fraction of fluid-filled 

inclusions is set to vary with  and the aspect ratio  of the 
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elliptical pore varies from 0.2 to 1. Note that, the normalized permeability of the host solid 

matrix is allways kept constant with .  

 
Figure 7. Normalized effective permeability versus the area fraction of fluid-filled inclusions. 

 

Figure 8. Normalized effective permeability versus the aspect ratio of fluid-filled inclusions. 

We plot in Figs. 8 and 9 the variation of the normalized effective permeability of porous 

material under investigation in terms of aspect ratio of the elliptical pore for all cases 

mentioned above. It can be seen from Fig. 8 and 9 that: (i) The macroscopic permeability  

augments with the increase of the porosity ; (ii) For a given values of the porosity  and slip 

coefficient , the effective permeability  increases when the aspect ratio  decreases (the 

pore becomes more elongated); (iii) When the value of interfacial parameter  reduces, 

respectively, the effective permeability  reduces. 
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Figure 9. Normalized effective permeability versus the aspect ratio of fluid-filled inclusions. 

4. CONCLUSION 

In recent years, investigations on doubly porous materials have been captured the 

attention of a good number of researchers. In the present research work, the estimation of the 

macroscopic permeability of doubly porous materials consisting of a solid matrix phase with 

fluid-filled inclusions has been obtained by applying the Boundary Element Method (BEM). 

In order to understand the role of the interfacial parameter, the geometrical properties of pores 

and the porosity on the effective permeability of double porosity materials, some numerical 

examples have been considered. The results obtained from the our elaborated approach have 

been compared with the numerical ones provided by the Finite Element Method. This 

comparison has confirmed the accuracy and efficiency of our method and all the results 

presented in this work. Finally, due to the mathematic analogy existing between different 

transport phenomena, all results obtained in the present work for effective permeability of 

doubly porous materials can be straightforwardly transposable to any other transport problems 

such as electric conduction, thermal conduction, dielectrics, magnetism, diffusion as well as 

acoustic problem. 
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