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Abstract. A finite element model using a multi-fiber approach is proposed in this paper for 

the analysis of reinforced concrete (RC) members using fiber-reinforced polymer (FRP) 

reinforcements, with a specific focus on the effect of pure torsion. The proposed model is 

formulated using a displacement-based approach and a kinematic assumption involving a two-

node Timoshenko beam. The compatibility and equilibrium between concrete and FRP 

materials in the membrane elements are formulated based on a discretization of the cross-

section into several areas following its stress state and the principle of the Modified 

Compression Field Theory. The nonlinear responses of RC elements with FRP bars can be 

predicted using an appropriate constitutive material law with internal equilibrium of 

transverse reinforcement and concrete. The pure torsional response is implemented using an 

enhanced formulation of concrete's tensile behavior, which is based on experimental tests on 

torsion and the characteristics of FRP materials. The good agreement between the numerical 

results and experimental data confirms the validity of the proposed model. 
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1. INTRODUCTION  

Fiber-reinforced polymer (FRP) reinforcement has been used in civil engineering for 

more than two decades as an alternative to conventional steel reinforcement. Over time, many 
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technical reports and design codes have been published to include flexural and shear 

resistance [1-4]. However, there are still no guidelines or standards for torsional behavior 

because torsion is often considered a secondary effect to flexure and shear. This can become a 

big problem as torsion can be a significant and non-negligible load in structures such as 

spandrel and curved beams in buildings, and curved girders in bridges. If not properly 

considered in the design phase, torsion can lead to undesirable and brittle failure. 

Design codes for torsional behavior of reinforced concrete (RC) structures are typically 

based on the space truss theory with fixed-angle hypothesis [5]. This theory was then 

developed to the variable space truss theory [6]. However, these models were proposed 

primarily for combined actions bending-shear-torsion. As a result, the tensile behavior of 

concrete in these models is always based on the stress-strain relationship obtained from shear 

tests. This can lead to significant differences in the modeling results of RC structures under 

pure torsion. To address this issue, some researchers have developed models that focus on the 

pure torsional behavior of RC structures. For example, a softened membrane model with a 

specific stress-strain relationship of concrete has been proposed [7]. Another approach is to 

discretize the cross-section into different regions following their stress state [8]. In addition to 

these analytical models, the multi-fiber approach has become increasingly popular in recent 

years. This approach is derived from the fiber beam-column element for earthquake-resistant 

response analysis of RC structures proposed by Spacone et al. [9]. The multi-fiber model has 

been further developed to study the pure torsion resistance of RC structures, such as some 

multi-fiber models using damage mechanics for the behavior of RC materials proposed by 

Mazars et al. [10], Capdevielle et al. [11] or Di Re et al. [12]. 

The limited knowledge on the torsional behavior of RC structures using FRP 

reinforcement is due to the lack of analytical approaches, experimental studies, and numerical 

models. The existing numerical and analytical models primarily focus on the strengthening 

and retrofitting aspect of RC structures, using space truss theory. Examples of such models 

include the models of Chalioris [13], Ameli et al. [14], Deifalla & Gobarah [15] or 

Alabdulhady et al. [16]. The torsional responses of RC elements with FRP reinforcement have 

also received attention from researchers, but only through analytical approaches, such as in 

the models developed recently by Deifalla et al. [17] or Hadhood et al. [18]. To the best of the 

authors' knowledge, there is currently no sectional-fiber finite element model capable of 

predicting the torsional behavior of RC beams using FRP bars. Experimental studies on this 

subject are also very limited, and most of the existing tests focus on the strengthening aspect. 

Therefore, the development of a numerical model and a set of experimental data is necessary 

to improve our understanding of the torsional behavior of FRP-reinforced concrete members.  

The main objective of this study is to develop a numerical finite element model to predict 

the behavior of RC beams with FRP reinforcement under pure torsional effects. The model is 

developed from the model of Nguyen et al. [19] and considers the compatibility and 

equilibrium between concrete and FRP materials of membrane elements following the 

principle of the Modified Compression Field Theory (MCFT)-based [20] and Mohr's circle. 

An enhanced concrete tensile stress-strain relationship for the pure torsional response is also 

proposed, based on the precedent author’s work. In the case of fine-grained concrete, the 

compressive concrete behavior follows the instructions in the work of Nguyen Huy Cuong & 

Ngo Dang Quang [21]. The cross-section is discretized into different regions following their 

stress state, in order to take into account the tube analogy assumption of RC beams under 

torsion after cracking, and eventually to consider the confinement effect. The validation of the 
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proposed model is guaranteed by comparing the numerical results to the experimental tests 

and theoretical formulations available in the literature. 

2. PROPOSED MODEL FORMULATION 

2.1. Modelling discussion 

Although the analytical approach based on space truss analogy is popular and useful for 

studying the torsional behavior of RC structures, numerical modeling with a sectional 

approach has some advantages, especially in terms of customization at the cross-section level. 

This allows the user to select the appropriate mechanical and material properties. This is 

particularly useful when considering the reduction in tensile strength of stirrups under 

torsional loading. In fact, many theoretical analyses and experimental results have shown that 

stirrups play an important role in the torsional behavior of RC components. After cracking, 

tensile stress is transferred from concrete to stirrup, while compressive stress in the concrete 

cover is transferred to the corners. The use of FRP materials, which have higher tensile 

strength than conventional steel, can increase torsional strength by up to 150% [17,18]. 

However, due to the materials properties of FRP, some researchers have reported a significant 

reduction in the tensile strength of composite stirrup in areas with complex stress states, such 

as the corner of cross-section [22]. Analytical models based on space truss analogy, which are 

built on the equilibrium and compatibility equations of the entire structure, cannot provide 

enough information to consider this reduction effect, which occurs at a local level.  

The study of sectional local problems can be solved by using simulation tools provided 

by computational software such as ABAQUS and ATHENA. These commercial software 

packages offer advantages in terms of ease of use, computational speed, and consistency of 

results. However, they can also have limitations when solving specific problems with high 

order of complexity and peculiarity. For example, in the case of the torsional response of 

concrete structures, the tensile behavior of concrete used in analytical models and commercial 

software is typically obtained from shear tests. This can lead to significant differences 

between simulated, analytical, and experimental results. For example, a 2-fold discrepancy 

between the numerical and experimental values of cracking torque has been reported [7,19].  

Based on the above analysis, this study proposes a numerical sectional-based model using 

the multi-fiber approach. The structure is divided into many longitudinal layers or fibers, and 

several control sections are created along the element axis. These control sections follow the 

Gauss-Lobatto quadrature rule for numerical integration. The intersection of longitudinal 

fibers and cross-section creates a system of integration points (called fiber) with their own 

coordinates, areas, and appropriate material law (Figure 1). The Material stresses and strains 

in each fiber are determined by force equilibrium or kinematic conditions. The sectional and 

element stiffness matrices are then computed using variational formulations and numerical 

integrations. The propagation of concrete crack is carried out using smeared-crack 

approaches, which handle cracking as a distributed effect with directionality. The Modified 

Compression Field Theory (MCFT) is used, along with a constitutive model to evaluate the 

stress-strain relationship of material points in RC members subjected to shear and axial 

stresses. 
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Figure 1. Multifiber approach for a RC member. 

2.2. Element and sectional kinematic 

Consider a two-node Timoshenko beam represented by a straight axis line delimited by 

end nodes I and J, and a local frame system of coordinates (x,y,z) as shown in Figure 2. 

 

Figure 2. Two-node Timoshenko beam and the local reference system. 

In general, the displacement field of a Timoshenko beams contains three translations and 

three rotations. However, under pure torsion, the displacement field consists in only one 

rotation about the longitudinal axis in every single point of the element axis. In a 

displacement-based formulation, this generalized displacement is determined from the nodal 

displacements by shape functions that are chosen linear in the present work: 
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where I

x  and J

x  are the twist angle at node I and J respectively; x is the coordinate of 

the section and L the element length; qe is the vector of nodal twist angle. The twist 
x  is then 

equal to: 
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Under the hypothesis of small displacements, the kinematic relation between material 

displacement and twist angle is established according to Saint-Venant torsional theory in 

order to take in account the effect of warping. Indeed, the axial displacement is a function of 

the profile of warping over the cross-section and distribution of warping along the element 

length. In the case of a solid cross-section, the warping effect is limited, but cannot be 

neglected, warping is considered free and its distribution is constant over the element length. 

The displacement field of free warping therefore becomes: 
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Where the term ( , )y z  represent the Saint-Venant warping function which describes the 

profile of warping over the cross-section, while the warping distribution is represented by the 

twist 
x . The strains of any material point of the cross-section are then evaluated with only 3 

components considered in the sectional analysis as follows: one normal strain and two 

transverse strains collected in a single strain vector ( , )f y ze . This vector is related to the twist 

by a compatibility matrix containing the material point characteristic: 
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Once the strain vector is obtained at each fiber, an appropriate material law is applied to 

determine the material stresses: 

 
f f f=s k e  (5) 

 where the 
fs  vector collect the material stresses ( )

T

xx xy xz   , and 
fk is the material 

stiffness matrix, determined by the constitutive models introduced in Section 2.3. 

The torsional moment at sectional level, consequently, can be determined as an integral 

over the cross-section area of the stress field in the section: 

 , ( ) T T

x s f f f f f s x
A A

M x dA dA = = = a s a k e K  (6) 

sK is defined as the sectional stiffness matrix. The element equilibrium is considered 

between internal and external potential energy, using the principle of virtual work, give the 

following relationship between the nodal twist angle 
eq , the external nodal torsional moment 

,x eM  and the external uniform torque 
uT : 

 ,

T

e e x e s u
L

dx= + K q M N T  (7) 

where the element stiffness matrix is defined from the sectional stiffness matrix 
sK  and 

the shape function matrix 
sB : 

 
T

e s s s
L

= K B K B  (8) 

The model formulation was written in MATLAB, a programming language that is well-

suited for handling matrix expressions. The principle of model code is general and consistent, 

making it easy to transform into other programming languages such as FORTRAN, C++, or 

Python. 
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2.3. Proposed material law of RC member using FRP reinforcement. 

The stress-strain relationship of the FRP reinforcement is defined by its material 

properties. It exhibits a linear elastic behavior until failure, with the ultimate strength fu and 

modulus of elasticity Ef being the most important values (Figure 3). It is important to note that 

in the proposed model, the ultimate strength of FRP reinforcement fu is taken as the value of 

the tensile strength of FRP for shear design ffv, as recommended in ACI 440.1R [1]. This 

tensile strength ffv must be limited by the value of the strength of bent portion of FRP 

reinforcement ffb. This is because the tensile strength of composite stirrup can be significantly 

reduced in areas with complex stress states, such as the corner of cross-sections [22]. 

 

Figure 3. Behavior of FRP materials. 

While the FRP constitutive law is relatively straightforward and can be evaluated in 

uniaxial directions, the material behavior of concrete is notably complex because it must be 

considered in biaxial direction. This complexity calls for a comprehensive analysis that not 

only encompasses torsional behavior but also includes the integration of FRP reinforcement. 

This context calls for the implementation of the Modified Compression Field Theory, in 

which the principal idea is to substitute this biaxial behavior of concrete with a uniaxial 

relationship. In this concept, the stress-strain is formulated in the principal direction of 

cracking: compressive (direction 2) and tensile direction (direction 1). Crack is assumed 

distributed in the concrete following a principal direction of inclined angle  , and the 

principal directions of strains and stresses are assumed to be coincident. Therefore, after 

cracking, the diagonal concrete struts are formed, and the behavior of a free-body membrane 

RC member using FRP reinforcement can be considered as a superposition of concrete strut 

and FRP reinforcement (Figure 4).  

 

Figure 4. Equilibrium of a membrane member. 
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Using the principle of Mohr's circle, the principal strains and stresses are related to the 

crack angle, hence in an integration point (fiber) the direction of concrete struts can be 

determined. Equilibrium and compatibility equations are evaluated with the average value of 

the stress and strain: 
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with 
1 , 

2  are the strains in the principal directions of concrete;   is the angle of principal 

direction; 
1 , 

2  the stresses in the principal directions of concrete; 
fl and 

ft  is the FRP 

reinforcement ratios in longitudinal and transversal direction, respectively. 

The stress-strain relationship of concrete in the principal directions is formulated in both 

compression and tension. In compression, it includes the softening effect of concrete since the 

principal compressive stress is affected by the principal tensile stress (Figure 5(a)). In tension, 

the stress-strain relationship aligns with the principles introduced in the constitutive model 

designed for RC members under torsion [19]. However, certain adaptations are made to 

accommodate the use of FRP reinforcement as a replacement for traditional steel (Figure 

5(b)). These adaptations are proposed based on calibration, to ensure that the influence of 

section dimensions, reinforcements ratio as well as the simplicity of the formulation are all 

taken into account for the torsional behavior. 

 

Figure 5. Concrete constitutive relationships for proposed model (case of conventional concrete). 

2.4. Section discretization 

A discretization of cross-section into several regions proposed by Navarro Gregori et al. 

[23] is borrowed in the proposed model (Figure 6). Such discretization, based on the direction 

of transversal reinforcement, can handle the contribution of stirrups in a multi-fiber model, by 

satisfying the internal equilibrium between concrete and steel. Secondly, the assumption of 
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tube analogy in the post-cracking phase can be realized by deactivating the contribution of the 

central region. 

 

Figure 6. Discretization of cross-section following the material stress state. 

The 1D-zone take into account the contribution of the longitudinal reinforcement bar 

(rebar) with the assumption that there is no interaction between concrete and FRP material. 

The only stress accounted for is the axial component 
xx  (or 

l ), which can be easily 

computed from the axial strain using an uniaxial behavior law of FRP material in Figure 3. 

The 2D-zone corresponds to the portion in which the transverse FRP reinforcement 

crosses in one direction: vertical or horizontal. The wall thickness of the tube in the post-

cracking phase is defined as the width of the 2D-zone. The stress and strain vectors in this 

zone are defined as ( )2 TD

f l t lt  =s  and ( )2 TD

f l t lt  =e . In the strain vector, the 

axial term 
l and transversal term 

lt  can be obtained from the sectional kinematic (expressed 

in Section 2.2, while the term 
t  is unknown and must be determined separately by an 

iteration process of satisfying the transverse equilibrium conditions at each fiber. This 

equilibrium condition, as defined in Eq. (9), is satisfied by imposing 0t = . Consequently, 

the resultant stress states have two non-zero components: a normal 
xx  and a transversal 

xy  

or 
xz  depending on the direction. The material stiffness matrix corresponds to this 2D-zone 

2D

fk  (in Eq. (5)) is determined based on the constitutive model in Section 2.3. 

The 3D-zone corresponds to the concrete areas where transverse FRP reinforcements 

come across in both directions (the four corners of section) and the regions of concrete in the 

core of section without any reinforcement. In this context, the stress and strain states have 

three components: one normal 
xx  and two transversals xy , 

xz . The material stiffness matrix 

corresponds to this 3D-zone 3D

fk  (in Eq. (5)) is formulated based on an extension of the 

original MCFT, proposed by Vecchio and Selby [24].  

Detailed expressions and formulations of the material stiffness matrix, as well as the 

equilibrium and local transformations are available within the author's model developed for 

RC member subjected to pure torsion [19]. 
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3. MODEL VALIDATION 

The validity of the proposed model is confirmed by comparing its results with 

experimental results from the test carried out by Hadhood et al. [18] and by Le DD et al. [25]. 

The key aspects of the experimental setup and the subsequent numerical validation are 

outlined as follows. 

3.1. Experimental setup 

The experimental study of Hadhood et al. includes 6 specimens subjected to pure torsion, 

in which one beam (BGW) has no stirrup, one beam (BGST-200) has perpendicular GFRP 

stirrup and the last 4 beams are reinforced with GFRP spirals. In the test of Le DD et al., 7 

specimens made from fine grained concrete are studied, but only 3 of them are reinforced 

with internal GFRP bars and stirrups (namely FRP.0, FRP.1 and FRP.2). The materials 

properties of FRP reinforcement and concrete are represented in Table 1. The beam and 

section dimensions, as well as the distribution of transverse FRP reinforcement, are shown in  

Figure 7 and Figure 8.  

 

Figure 7. Details of section and reinforcement of tested beam in the experiment of Hadhood et al. [34] 

 
Figure 8. Details of section and reinforcement of tested beams in the reported experiment [39]. 
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Table 1. Material properties of tested beams. 

Beams 
fck 

(MPa) 

Reinforcem

ent 

Ef 

(GPa) 

ffu 

(MPa) 

ffb 

(MPa) 

ffv 

(MPa) 

Af,bar 

(mm2) 

BGW [18] 36,6 GFRP ∅9.5 44,8 950 474 179,2 70,8 

BGST-200 

[18] 
36,6 

GFRP 

∅13.5 
35,2 595 485 143,3 143 

FRP.0 [25] 45,4 ∅6 42,5 801,3  170 19,6 

FRP.1 [25] 40,7 ∅20 42,5 810  170 240,4 

FRP.2 [25] 40,7       

3.2. Validation and analysis 

As indicated in Table 2, the numerical results (obtained from the proposed model) are in 

good agreement with the experimental data. On the other hand, in the test of Le DD et al., the 

values of cracking torsional moment Tcr from the ACI 318-19 design code are significantly 

underestimated. The value of cracking torsional moment as defined in ACI 318-19 design 

code as [26]: 

 

2'

3

cpc

cr

cp

Af
T

p

 
=   

 

 (10) 

where Acp and pcp are the area enclosed by the outside perimeter and the outsider 

perimeter of concrete cross section, respectively. In this sequence, the analytical and 

experimental values of cracking torque once again showed a two-fold difference, as is the 

case with conventional RC beams under pure torsion [7,19]. It is also noteworthy that the 

analytical values of Tcr are the same for beams FRP.1 and FRP.2, which have the same 

compressive strength and section dimensions, since they are the only parameters related to the 

calculation of Tcr in not only ACI 318-19, but also other conventional design codes, such as 

Eurocode or CSA. In contrast, similarly to the theoretical formulation (from skew-bending 

theory), the proposed model has the capacity to offer reasonable and distinct Tcr values for 

each specimen, thanks to its enhanced formulation for the tensile behavior of concrete. This 

formulation incorporates not only concrete’s compressive strength and section dimensions, 

but also accounts for the ratio of transverse reinforcements, which is the main different factor 

between the 3 tested specimens.  

The torque versus twist curves of all tested beams are plotted in Figure 9, Figure 10, 

Figure 11 and Figure 12. The numerical values generated by the proposed model agree well 

with the experimental data, particularly in the pre-cracking stage. In the post-cracking stage, 

the proposed model also captures the significant reductions in torsional moment, as evidenced 

by the transition between the two phrases before and after cracking. In the case of beam BGW 

(Figure 9) and FRP.0 (Figure 11), which have no transverse reinforcement, brittle failures are 

observed in both experimental tests and the proposed model. However, the post-cracking 

behavior of the reinforced beams is different. For beam BGST-200 (Figure 10), the ultimate 

torque is higher than the cracking torque. This is consistent with the results constated in the 

cases of RC beams with conventional steel reinforcement, as the transverse reinforcement 

helps to confine the concrete and prevent it from cracking further. On the other hand, beams 
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FRP.1 and FRP.2, which were made of fine-grained concrete, regain some of their torsional 

strength after cracking, but the ultimate torque is still lower than the cracking torque: 84,4% 

in case of beam FRP.1 and 95,5% in case of beam FRP.2. This is because the fine-grained 

concrete is more brittle than conventional concrete. The proposed model captures all of these 

features well. After the initial drop in torque that occurs at first cracks, the beams regain some 

of their strength, but the ultimate torques are still lower than the cracking torques. After 

reaching the ultimate torque, the torsional stiffness decreases slowly, as in the experimental 

tests. 

Table 2. Values of cracking torsional moment. 

Beam

s 

Experimenta

l values (kN.m) 

Numerical 

values (kN.m) 

ACI 318-

19 (kN.m) 

Skew-

bending theory 

(kN.m) 

BGW 11,9 12,5 10,8 13,9 

BGST-200 12,9 12,7 10,8 13,9 

FRP.0 18,6 17,3 8,1 11,4 

FRP.1 16,0 16,1 7,7 11,0 

FRP.2 16,8 16,3 7,7 11,2 

 

 
Figure 9. Torque versus twist curves of beam 

BGW. 

 
Figure 10. Torque versus twist curves of 

beam BGST-200. 

 
Figure 11. Torque versus twist curves of 

beam FRP.0 

 
Figure 12. Torque versus twist curves of 

beam FRP.1 & FRP.2 
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4. CONCLUSION 

In this study, a numerical model using a multi-fiber finite element approach is developed 

for RC beam with FRP reinforcement subjected to pure torsion. The element and sectional 

kinematics of the proposed model are general enough to be applied in any finite element 

model or formulation. Several numerical examples were carefully executed to demonstrate the 

proposed model's ability to predict the torsional behavior in the pre-cracking stage. The 

cracking torsional moment was accurately predicted, while the post-cracking behavior was 

better represented with higher torsional transverse reinforcement ratios. This is consistent 

with theoretical analysis.  

However, the number of experimental tests in the literature is still very limited, so the 

consistency of the proposed model still needs to be verified. In the future, more features can 

be implemented in the proposed model to consider more effects such as confinement or the 

bond effect between concrete and FRP reinforcement. 
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