
Transport and Communications Science Journal, Vol. 74, Issue 7 (09/2023), 775-789 
 

775 

 

 

Transport and Communications Science Journal 

 

DETECTION OF BEARING FAULTS BASED ON BAND-PASS 

FILTERS AND FOURIER INTERPOLATION OF THE LOAD 

TORQUE 
 

 

Van Trang Phung1, Thanh Lich Nguyen2* 

1Viettel High Technology Industries Corporation, No 380 Lac Long Quan Street, Hanoi, 

Vietnam 

2University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam  

 

 

ARTICLE INFO 

TYPE: Research Article 

Received: 14/07/2023 

Revised: 21/08/2023 

Accepted: 23/08/2023 

Published online: 15/09/2023 
https://doi.org/10.47869/tcsj.74.7.2 
* Corresponding author 

Email: lichnt@utc.edu.vn 

Abstract. Bearing faults are widely found in mechatronics systems especially those that are 

required to work with unbalance loads. A highly reliable mechatronics system requires high 

quality bearings and/or effective bearing fault diagnostic procedure. This paper deals with 

the detection of rolling bearing faults based on band-pass filters and Fourier interpolation of 

the load torque. The reference torque, which is the output of the speed controller, is 

considered to be an approximation of the load torque. The reference torque is band-pass 

filtered and then interpolated in terms of Fourier series by using a sliding window method. 

The Fourier coefficients associated with a healthy bearing are served as a baseline and are 

compared with faulty lines corresponding to faulty bearings to detect the presence of a 

bearing failure. The proposed diagnostic method can be conducted online and does not 

require any additional sensors. Furthermore, the proposed method is able to detect single-

point defects whose faulty levels are located at level C of the ISO 10816 Part 3. A 

mechatronic system equipped with artificial bearing faults is built in the laboratory to verify 

the effectiveness of the proposed method.  
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1. INTRODUCTION  

Mechatronics systems characterized by electrical and mechanical parts are commonly 

found in production processes. The demand for a highly reliable and productive mechatronics 

system requires both the mechanical and electrical parts to be trustworthy. Among vital causes 

of mechanical and electrical malfunctions, bearing faults account for up to 40% of all failures 

[1]. The diagnosis of incipient bearing faults is therefore crucial in terms of improving the 

system’s productivity and robustness. 

There are numerous methods available in the literature dedicated to the detection of bearing 

faults. These methods can be divided into three main streams: model-based, signal-based and 

data-driven-based methods [2]. The first group is based on the detection of changes in the 

system’s parameters caused by the bearing faults [3-4]. The model-based methods do not 

require additional sensors than those that were already installed in the industrial settings but it 

demands a deep understanding of the system, from which the mathematical model of the system 

can be constructed. 

The signal-based methods tell whether or not a bearing fault occurs by analyzing measured 

signals that contain intrinsic information related to the faults [5-7]. The signal-based diagnostic 

methods are able to detect both single point defects in the inner raceway, outer raceway, as well 

as balls or cage of rolling bearings and can be conducted online or offline with/without the use 

of additional sensors. 

Recently, data-driven-based methods have been investigated extensively and have gained 

considerable achievement [8-10]. It was proven that the multi-layer structure included in the 

deep learning framework can extract hidden discriminative features in the raw signals, then 

construct the relationship between the extracted features and the fault labels. However, it is 

difficult to implement the data-driven-based methods online due to the calculation burden 

required by the algorithm as the methods require additional sensors for obtaining a big amount 

of data. 

In the field of diagnosis of rolling bearing faults, a simple method that can be implemented 

online without the use of additional sensors is still challenging. This paper proposes such a 

procedure that is based on band-pass filters and the Fourier interpolation of the load torque. The 

novelty of the proposed method lies in the analysis of the load torque augmented with band-

pass filters and the sliding window method that allows the diagnostic algorithm to be conducted 

continuously during the operation of industrial settings. The proposed diagnostic algorithm can 

detect single-point defects on either the outer raceway or the inner raceway without the use of 

additional sensors. Artificial faulty bearings will be used to verify the effectiveness of the 

method. 

It is necessary to mention that the adaptation of band-pass filters to detect characteristic or 

resonant frequencies caused by bearing faults has been developed by some research groups [11-

13], who  share the same idea of using vibration signals for their proposed diagnostic methods. 

The acquisition of vibration signals requires vibration or acceleration sensors that demands 

more investment and requires expertise for the operation of the sensors. In contrast, the 

diagnostic method presented in this work uses the reference torque, that is the output of the 

speed controller, to detect characteristic fault frequencies of the bearing faults. This means that 

our method does not require any additional sensors other than those that were already installed 

in the electrical drives.  
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Hereafter, the structure of the paper is organized as follows: characteristic fault frequencies 

of rolling bearings will be presented in Section 2 while Section 3 dedicates to the proposed 

diagnostic method. Section 4 focuses on the experiment results. 

2. CHARACTERISTIC FAULT FREQUENCIES OF ROLLING BEARINGS 

Figure 1 depicts the structure of a rolling bearing that consists of four main components, 

namely an outer raceway, a cage, balls, and an inner raceway. The load angle 𝛼 is defined as 

the angle between the centerline of the bearing and the direction of the force that the rolling 

elements exert on the outer raceway [14]; 𝑑b, 𝑑c, 𝑑i, 𝑑o are the diameter of the balls, the cage, 

the inner raceway and the outer raceway, respectively.  

The outer raceway is often fixed inside the bearing housing. The characteristic fault 

frequencies of the four main single-point defects on the outer raceway 𝑓ORF , on the inner 

raceway 𝑓IRF, on the balls 𝑓BF and on the cage 𝑓CF are given as follows [15]: 

 

 

Figure 1. Graphical representation of a rolling bearing: the axial view (left) and the cross-section 

view (right). 
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1
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𝑑b

𝑑c
∙ cos𝛼) (4) 

where z is the number of bearing balls and 𝑓n is the rotational frequency of the inner raceway. 

It can be seen from (1)-(4) that the characteristic fault frequencies depend on the mechanical 

dimension and velocity of the undertested bearing.  

When a bearing installed in an electrical machine degrades and enters faulty condition, it 

can create changes in the load torque whenever the bearing balls go over the damaged areas. 

This natural phenomenon results in characteristic fault frequencies hidden in the spectrum of 

the load torque. The idea behind the method proposed in this paper regarding the detection of 

such characteristic fault frequencies that will be elaborated in Section 3. 

As inner and outer raceway faults are found up to 90% of all bearing failures [16], this 

research work will focus mainly on these two types of bearing faults. For bearings with six to 

twelve bearing balls, the outer and inner characteristic fault frequencies given in (1) and (2) can 

be approximated as follows [17]: 

𝑓ORF = 0.4 ∙ 𝑧 ∙ 𝑓n (5) 

𝑓IRF = 0.6 ∙ 𝑧 ∙ 𝑓n (6) 

3. PROPOSED METHOD FOR THE DETECITON OF BEARING FAULTS 

As the load torque contains intrinsic information related to the bearing faults, it can be used 

in a diagnostic algorithm whose outputs provide information about whether or not the 

undertested bearing is suffering from any kinds of damages. The load torque can be measured 

by using load sensors but this approach leads to additional cost. A promising solution to 

estimate the load torque is the use of a state observer or Kalman filter [18-19] that was proven 

successful to be conducted online with high precision. In this paper, a very simple way for 

obtaining the information of the load torque is based on an assumption that if the speed 

controller is properly designed, the reference torque which is the output of the speed controller 

can be regarded as a good approximation of the load torque. The reference torque will be used 

in the diagnostic algorithm. 

3.1. Proposed diagnostic method 

As mentioned in Section 2, the spectrum of the load torque contains hidden information 

related to the characteristic fault frequencies. Obviously, the load torque consists of other 

harmonics than those related to the bearing faults. So, there is a rising question on how to extract 

the hidden information of characteristic fault frequencies in the spectrum of the load torque. By 

utilizing the load torque to detect bearing faults, the proposed diagnostic algorithm does not 

require any additional sensors. This is one of the novelties of our proposed method.  

Figure 2 shows the schematic of the proposed diagnostic procedure that is composed of 

three main components: the band-pass filter (BPF), the fast Fourier transformation (FFT) and 

the fault decision-making (FDM). 𝜔∗  and 𝜔  are the reference and measured velocities, 

respectively. 𝐶𝜔 is the velocity controller where a proportional-integral (PI) structure designed 

upon the symmetrical optimum criteria is often adopted.   
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The BPF is designed so that its specific frequencies are the characteristic fault frequencies 

of the bearing faults. In this way, the BPF is able to remove frequencies unrelated to the faults. 

The Fast Fourier Transform (FFT) augmented with a sliding window method is used to calculate 

the magnitude of each harmonic component of the Fourier expansion of the filtered load torque. 

Since the sliding window can be conducted online, the diagnostic algorithm can be implemented 

continuously during the operation of the mechatronic systems. This is the other novelty of this 

research work. The harmonics’ coefficients associated with a healthy bearing are used as a base 

line and are compared with faulty lines corresponding to faulty bearings. The fault decision-

making uses the differences between the two lines to decide the type of bearing faults. The 

working principle of the BPF and FFTs is presented below. 

3.2. Band-pass filter (BPF) 

As aforementioned, the BPF is composed of multiple band-pass filters where each of them 

is designed with a specific frequency defined by the characteristic fault frequencies. The 

transfer function of the BPF is given by: 

BPF(𝑠) = ∑

𝜔i

𝑄i
∙ 𝑠

𝑠2 +
𝜔i

𝑄i
∙ 𝑠 + 𝜔i

2
𝜔i

 (7) 

where 𝜔i = 2π ∙ 𝑓i with 𝑓i is the considered frequency; 𝑄i is the quality factor. The considered 

frequency 𝑓i  can be adaptively selected according to (5) and (6) which depends on the operating 

velocity of the undertested bearing. The quality factor affects the filtering behavior of the band-

pass filter. The increase of 𝑄i  results in a stronger band-pass filter in terms of disturbance 

rejection.  

Another concern associated with the implementation of the BPF is the discretization 

method that has to ensure a precise amplitude and/or root locus responses. There are different 

ways for discretizing the BPF, such as zero-order hold (ZOH), triangle approximation (First-

order hold - FOH), impulse invariant (impulse), Tustin, zero-pole matching (matched) and 

least-square method (least-square) [20]. 

The discretization methods do not exhibit considerable differences around the 

characteristic frequency but strongly affect the magnitude response of the BPF when the ratio 

between the sampling frequency and the characteristic frequency of the BPF is insignificant 
(𝑓i/𝑓s ≪ 0.2). Figure 3 depicts the Bode plot of a BPF according to different discretization 

methods where 𝑓s = 5 kHz, 𝑓i = 1 kHz, 𝑄i = 1. The zoom-in portion of the magnitude response 

around 𝑓i = 1 kHz shows that the least-square method provides the most precise amplitude 

response around the characteristic frequency of the BPF. The other discretization methods 

signify or diminish the amplitude at 𝑓I, hence they are unsuitable choices. 

 

 

Figure 2. The schematic of the diagnostic procedure. 
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Figure 3. Bode plot of a band-pass filter according to different discretization methods (with 

sampling time 𝑓s = 5 kHz, 𝑓i = 1 kHz, 𝑄i = 1.0): (left) the original Bode plot; (right) the zoom-in 

portion at the characteristic frequency 𝑓i = 1 kHz. 

3.3. Fast Fourier Transformation (FFT) 

As aforementioned the BPF aims to ignore unwanted harmonics in the measured signal. The 

output of the BPF is the filtered signal that now mainly contains harmonics related to faulty 

frequencies. The filtered signal is undergone a fast Fourier transform algorithm to extract 

desired information buried in its spectrum. For conducting the diagnostic algorithm online, a 

sliding-window method can be used for the FFT. The working principle of the sliding window 

method is as follows: 

Supposing that the filtered signal is expanded in terms of Fourier series as a function of 𝛾𝑚 

[21]. 

𝑇filter = 𝑎0 + ∑(𝑎𝑘 ∙ cos(𝑘 ∙ 𝛾𝑚) + 𝑏𝑘 ∙ sin(𝑘 ∙ 𝛾𝑚))

∞

𝑘=1

 (8) 

where: 

  

𝑎𝑘 =
2

𝑁
∙ ∑ 𝑇filter(𝑗 ∙ ∆𝛾𝑚) ∙ cos(𝑘 ∙ 𝑗 ∙ ∆𝛾𝑚);  𝑏𝑘 =

2

𝑁
∙ ∑ 𝑇filter(𝑗 ∙ ∆𝛾𝑚) ∙ sin(𝑘 ∙ 𝑗 ∙ ∆𝛾𝑚);  ∆𝛾𝑚 =

2π

𝑁
 𝑁−1

𝑗=0
𝑁−1
𝑗=0     

N is the number of samples per one period of 𝑇filter.  The function of the sliding-window method 

is to calculate Fourier coefficients 𝑎𝑘 and 𝑏𝑘 while 𝛾𝑚 changes with time (sliding). The figure 

representation of the sliding window method is shown in Figure 4. The sliding-window method 

has some highlighted properties as follows. First, the online implementation converges after 

exactly one period of the input signal. Second, the number of samples per signal period N should 

be chosen properly. The higher the value of N, the more precise estimation of the Fourier 

coefficients but the more calculation and storage required by the calculation of the sliding-

window method. From extensive experiments, 𝑁 ≥ 8 ensures a good estimation precision when 

the method is implemented online and the bearing is operated at high speed. 
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Figure 4. Figure representation of the sliding-window method. 

3.4. Fault decision making (FDM) 

According to the spectrum of the filtered load torque obtained from the BPF, the fault 

decision-making will decide whether or not the bearing is suffering from a defect. It is important 

to note that the detectable faulty level of the bearing is located at level C of the ISO 10816 

standard part 3 [22], where the bearing still offers normal functionality but maintenance should 

be considered.  

The FDM uses the spectrum of the filtered load torque with a healthy bearing as the 

baseline and is compared with faulty lines associated with faulty bearings. If there are 

significant differences in the outer raceway characteristic fault frequency and its multiples, the 

undertested bearing is diagnosed to have an outer raceway. The same situation is applied to the 

inner raceway failure. The working principle of the FDM will be presented in detail in the 

experimental result hereafter. 

4. PROPOSED METHOD FOR THE DETECITON OF BEARING FAULTS 

In this section, experiments will be presented to validate the effectiveness of the proposed 

method. The first section dedicates to the description of the testbench followed by the 

preparation of desired faulty bearings. Experiment results will be presented lastly to confirm 

the operation of the proposed diagnostic algorithm. 

4.1. Description of the testbench 

Figure 5 shows the mechatronic system used to verify the operation of the diagnostic 

method. The mechatronic system is a horizontal slider-crank mechanism that is characterized 

by repetitive load torque and commonly found in industrial settings, like pick and place 

machines, punching machines or robotic arms. There are two bearings in between the driving 

permanent magnet synchronous machine (PMSM) and the mechanical system: one is located 

in the load side and the other is installed in the machine side. The undertested faulty bearing is 

UC 205 whose graphical dimension is depicted in Figure 6. The testing bearing is placed on the 

load side. The parameters of the driving machine are given in Table 1 while that of the bearing 

are given in Table 2. The field-oriented control algorithm for the PMSM is conducted by a high 

performance dSPACE 1104 board. 

4.2. Preparation of artificial faulty bearings 

As already mentioned in Section 3, the diagnostic algorithm is developed to be able to 

detect bearing faults located at level C of the ISO 10816 Part 3 standard. It is therefore crucial 

to prepare artificial faulty bearings at desired faulty level. Figure 7 shows the levels of rolling 

bearing faults classified based on the vibration velocity measured at the housing of the bearings. 
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Figure 5. Experimental setup. 

 

 
 

Figure 6. Graphical dimension of the testing bearing UC 205. 

 

 

Figure 7. ISO 10816 Part 3 for classification of faulty levels of rolling bearing. 
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Figure 8 shows the case of an outer raceway defect, where a hole on the housing and a hole 

on the outer raceway were created that allow a screw to go up and down to change the pressure 

contact with the bearing balls. The location of the screw is set so that the vibration velocity 

measured at the housing of the bearing categorizes the faulty level of the undertested bearing at 

level C of the ISO 10816 standard. Figure 9 depicts the vibration velocity measured by an MMF 

KSI 80VB vibration sensor at the housing of the faulty bearing while the system was running 

at 1000 rpm. It is observed in Figure 9 that the vibration velocity measured with a healthy 

bearing (in the red) is small and is categorized at level B while the faulty bearing is at level C 

(the blue line).    
Table 1. Parameters of the driving machine. 

 

 

 

 

 

 

 

 

 

 
Table 2. Parameters of the testing bearings. 

Parameters Value Unit 

Load angle, α 0                     degree  

Outer diameter, D 52 mm 

Inner diameter, d 25 mm 

Inside ring width, B 34.1 mm 

Outside ring width, C 17 mm 

Radius, r 1 mm 

Groove position, C1 4.0 mm 

Dimension, S1 19.8 mm 

Number of balls, z 9 balls 

For preparing an inner raceway fault, a hole in the shaft and a hole in the inner raceway 

were created that allow the screw to go up and down inside the shaft and touch the ball bearings 

as shown in Figure 10. The location of the screw is changed until the vibration velocity 

measured on the bearing housing tells us that the faulty level is at level C of the ISO 10816 

standard. The vibration velocity is depicted in Figure 11. 

 
Figure 8. Bearing with artificial outer raceway defect. 

Parameters Value Unit 

Machine model 
ABB SDM 101-

005N8-115 

Nominal power 1.54 kW 

Nominal velocity 3000 rpm 

Nominal torque 4.9 Nm 

Number of pole pairs 3  

Moment of inertia 0.0006 kg.m2 
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Figure 9.  Vibration velocity corresponding to an artificial outer raceway fault. 

 

 
Figure 10. Bearing with an artificial inner raceway fault. 

 

 

Figure 11. Vibration velocity corresponding to an artificial inner raceway fault. 

4.3. Verification of the proposed diagnostic method 

Experiments with the outer raceway defect are presented first. Figure 12 shows the 

reference torque that is the output of the conventional proportional-integral controller with a 

healthy bearing (lower figure) and with an outer raceway fault (upper figure). It is observed that 

the reference torque changes periodically according to the rotor angle as the mechatronic system 

is characterized by a repetitive load cycle. The system is driven at 60 rpm resulting 𝑓n = 1 Hz. 

The ten-seconds sample is undergone the diagnostic algorithm meaning that 𝑓n = 10 Hz  and 

the outer characteristic fault frequency of the outer raceway defect given in (5) is: 

𝑓ORF = 0.4 ∙ 𝑧 ∙ 𝑓n = 0.4 ∙ 9 ∙ 10 = 36 Hz (10) 
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The BPF is designed with 𝑓i = 𝑖 ∙ 𝑓ORF  with 𝑖 =  1 ÷ 4  and the quality factor 𝑄i =
0.7. The least-square discretization method is adopted.  The spectrum of the filtered load torque 

depicted in Figure 13 clearly shows considerable differences between the baseline obtained 

from a healthy bearing and the faulty line associated with the outer raceway defective bearing. 

The fault decision making (FDM) can conclude that the outer raceway fault at level C of the 

ISO 10816 was successfully detected. 

 
Figure 12. Reference torque and rotor mechanical angle: (upper) outer raceway fault; (lower) 

healthy bearing. 
 

 

Figure 13. Spectrum of the load filtered load torque: harmonics up to the 4th of the 𝑓ORF is 

considered; 𝑄i  =  0.7. 
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For the case of the inner raceway fault, the bearing with an artificial fault as prepared in 

Section 4 is tested. The reference torque and the rotor angle are depicted in Figure 14. It is 

proven again that the reference torque is a periodic function of the rotor angle. The characteristic 

fault frequency corresponding to the inner raceway fault defined by (6) is: 

𝑓IRF = 0.6 ∙ 𝑧 ∙ 𝑓n = 0.6 ∙ 9 ∙ 10 = 54 Hz (11) 

  

 

Figure 14. Reference torque and rotor mechanical angle: inner raceway fault. 

 

 

Figure 15. Spectrum of the load filtered load torque: harmonics up to the 2nd of the 𝑓𝐼𝑅𝐹 is 

considered; 𝑄𝑖  =  0.7. 
 

The spectrum of the filtered load torque is depicted in Figure 15 that shows significant 

differences between the faulty line and the baseline at 𝑓IRF and its multiples. The inner raceway 

fault has a distinctive characteristic, namely the sideband effect. Besides the characteristic fault 
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frequency, the sideband frequencies defined (12) also serve as signatures for the detection of 

the inner raceway fault [23]. 

𝑓sb
𝑖,𝑘 = |𝑖 ∙ 𝑓IRF + 𝑘 ∙ 𝑓n| (12) 

where 𝑖  and 𝑘 are integers. The sideband effect is caused by the unbalanced load zone 

distribution inside a bearing. It is well known that rolling elements in a bearing are not subjected 

to an equal load [24]. When the defect rotates through the load zone, an impulse will be created 

every time a ball passes over the damaged area. The intensity of the shock will be the greatest 

magnitude if the defect is located at the point of maximum radial torque. Therefore, the most 

intense impulse is generated on every turn of the machine, assuming that the inner raceway 

synchronously rotates with the shaft of the driven machine. This phenomenon leads to the fact 

that the intensity of the defect is modulated by the mechanical rotation frequency 𝒇𝐧. And 

interestingly the sideband effect is clearly observed in Figure 15, for examples: 𝑓sb
1,−2 =

34 Hz, 𝑓sb
1,−1 = 44 Hz, 𝑓sb

1,2 = 74 Hz, 𝑓sb
2,−4 = 88 Hz, 𝑓sb

2,−2 = 108 Hz, 𝑓sb
2,1 = 138 Hz . The 

FDM can conclude that the inner raceway fault at level C of the ISO 10816 standard was 

successfully detected. 

5. CONCLUSIONS 

In this paper, a novel algorithm based on band-pass filters and Fourier interpolation of the 

load torque for the detection of rolling bearing failure was proposed. The diagnostic algorithm 

was proven to successfully detect inner raceway and outer raceway defects at level C of the ISO 

10816 Standard without the use of additional sensors rather than those that were already 

installed in a mechatronics system. The effectiveness of the proposed method was validated by 

experiments and can be conducted either online or offline during the operation of the 

mechatronics system. 
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