

Transport and Communications Science Journal

A METHODOLOGY FOR DETERMINING LEVELLING ELEVATION BY ESTABLISHING GEOID MODLE BASED ON GNSS DATA AND RCR TECHNIQUE

Tran Quang Hoc

University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam

ARTICLE INFO:

TYPE: Research Article

Received: 19/04/2023 Revised: 03/06/2023 Accepted: 06/06/2023 Published online: 15/06/2023

https://doi.org/10.47869/tcsj.74.5.3

* *Corresponding author* Email: hoctq@utc.edu.vn; Tel: +84963814555

Abstract. Accurately determining leveling elevation from measurement results and processed GNSS data is dependent on the accuracy of the chosen Geoid model and Digital Terrian model. Currently, global geoid models like EGM2008, EIGEN-6C4, SGG-UGM-1, and GECO are commonly used worldwide, including in Vietnam. However, these models are only suitable for large areas, not specific regions like mountainous areas or those with limited coverage. On the other hand, in construction surveying, an important task is to generate geodetic benchmark points whose coordinates are measured by GNSS technology, and the average height is measured by the leveling method. The problem posed if the combination of control benchmark points, terrain numerical models, and geoid models suitable for the survey area will allow for building a local Geoid model with higher accuracy as the basis for determining leveling height based on GNSS measurement technology. To address this current issue, this work is to research and establish a local Geoid model by utilizing Remove-Compute-Restore (RCR) techniques on overlapping GNSS data and elevation data points. The results demonstrate that the proposed model can create a more accurate local Geoid model, thereby improving the accuracy of leveling elevation calculations derived from measurement results and GNSS data processing.

Keywords: Geodetic elevation, levelling elevation, geoid height, model OSU91A, model EGM96, model EGM2008, Digital terrain model.

© 2023 University of Transport and Communications

Tạp chí Khoa học Giao thông Vận tải

NGHIÊN CỨU PHƯƠNG PHÁP XÁC ĐỊNH ĐỘ CAO THỦY CHUẨN TỪ KẾT QUẢ ĐO VÀ XỬ LÝ SỐ LIỆU GNSS QUA XÂY DỰNG MÔ HÌNH GEOID CỤC BỘ BẰNG KỸ THUẬT RCR

Trần Quang Học

Trường Đại học Giao thông vận tải, Số 3 phố Cầu Giấy, Hà Nội, Việt Nam

THÔNG TIN BÀI BÁO:

CHUYÊN MỤC: Công trình khoa học

Ngày nhận bài: 19/04/2023 Ngày nhận bài sửa: 03/06/2023 Ngày chấp nhận đăng: 06/06/2023 Ngày xuất bản Online: 15/06/2023

https://doi.org/10.47869/tcsj.74.5.3

* *Tác giả liên hệ* Email: hoctq@utc.edu.vn; Tel: +84963814555

Tóm tắt. Bài toán xác định chính xác độ cao thủy chuẩn từ kết quả đo và xử lý số liệu GNSS phu thuộc vào đô chính xác của mô hình Geoid và mô hình số địa hình được lựa chon. Hiện nay trên thế giới và Việt Nam thông thường sử dụng các mô hình toàn cầu như EGM2008, EIGEN-6C4, SGG-UGM-1, GECO, ... Các mô hình trên chỉ phù hợp cho toàn cầu hay một khu vực rông lớn, không phù hợp cho một khu vực có diện tích giới han, hoặc có đặc thù riêng như khu vực miền núi. Mặt khác, trong khảo sát thi công công trình, một nhiệm vụ quan trọng là phải xây dựng được lưới khống chế trắc địa bao gồm các điểm vừa có tọa độ được đo bằng công nghệ GNSS, độ cao thủy chuẩn được đo bằng phương pháp đo cao hình học. Bài toán đặt ra nếu kết hợp được các điểm lưới khống chế, mô hình số địa hình và mô hình Geoid phù hợp với khu vực khảo sát sẽ cho phép xây dựng được mô hình Geoid cục bộ với độ chính xác cao là cơ sở cho việc xác định độ cao thủy chuẩn dựa trên công nghệ đo cao GNSS. Trong bài báo này, nhóm tác giả đã nghiên cứu xây dựng mô hình Geoid cục bộ dựa trên các điểm song trùng có số liêu đo GNSS và thủy chuẩn, sử dung kỹ thuật Loại bỏ–Tính toán–Phuc hồi (Remove–Compute–Restore; RCR). Kết quả nghiên cứu của bài báo cho phép xây dưng được mô hình Geoid cục bô có đô chính xác cao hơn, từ đó cho phép nâng cao đô chính xác tính độ cao thủy chuẩn từ kết quả đo và xử lý số liệu GNSS.

Từ khóa: Độ cao trắc địa, độ cao thủy chuẩn, độ cao Geoid, mô hình OSU91A, mô hình EGM96, mô hình EGM2008, mô hình số địa hình.

© 2023 Trường Đại học Giao thông Vận tải

1. ĐẶT VẤN ĐỀ

Tại Việt Nam, hiện nay chưa có mô hình geoid quốc gia hoàn chỉnh, do đó khi xác định độ cao thủy chuẩn từ kết quả đo và xử lý số liệu GNSS thông thường dựa trên các mô hình toàn cầu như mô hình EGM2008, EIGEN-6C4, SGG-UGM-1, GECO. Sau đó dựa vào các phần mềm xử lý số liệu GNSS để tính chuyển độ cao trắc địa về độ cao thủy chuẩn cho các điểm. Vì vậy, độ chính xác độ cao thủy chuẩn nhận được chỉ tương đương với độ cao thủy chuẩn hạng IV, III [1-18].

Để xây dựng mô hình geoid chính xác cần phải có độ cao geoid chính xác của các điểm, số liệu này thông thường được xác định từ kết quả đo trọng lực, điều này rất khó trong một khu vực cục bộ. Hiện nay, công tác trắc địa trong xây dựng công trình, ở giai đoạn đầu thường phải xây dựng mạng lưới tọa độ GNSS hạng IV, và lưới độ cao tương đương hạng IV Nhà nước qua các điểm này. Khi đó, trong khu vực có các điểm GNSS song trùng (vừa có độ cao trắc địa và độ cao thủy chuẩn), đây sẽ là cơ sở cho phép nội suy giá trị độ cao geoid để xây dựng một mô hình geoid cục bộ, phù hợp trong khu vực.

Để nội suy giá trị độ cao geoid cho các điểm đòi hỏi phải có các kỹ thuật nội suy phù hợp. Vì vậy, trong bài báo này nhóm tác giả ứng dụng kỹ thuật RCR [2] để nội suy giá trị độ cao geoid.

2. NỘI DUNG

2.1. Cơ sở lý thuyết

Tại các điểm lưới GNSS hạng IV, các điểm vừa có độ cao trắc địa (H) và độ cao thủy chuẩn (h), độ cao Geoid (N) được tính trực tiếp theo công thức (1):

$$N_i^{GNSS-TC} = H_i - h_i \tag{1}$$

Trong đó: $N_i^{GNSS-TC}$ là độ cao Geoid, H_i độ cao trắc địa và h_i độ cao thủy chuẩn tương ứng của điểm *i*;

Nếu trong khu vực khảo sát có mật độ điểm độ cao Geoid GNSS-Thủy chuẩn phù hợp, bao trùm khu vực khi đó chúng ta có thể xây dựng được mô hình Geoid cục bộ cho khu vực. Tuy nhiên, theo Schwarz (1990) [3], mặt Geoid được chia thành các thành phần có bước sóng dài, thành phần có sóng trung, bước sóng ngắn và cực ngắn. Các dữ liệu khác nhau sẽ đóng góp ở các thành phần có bước sóng khác nhau. Kết quả độ cao Geoid N được xác định trực tiếp theo công thức (1) luôn tồn tại các ảnh hưởng do các thành phần bước sóng của mặt Geoid gây ra, làm cho dữ liệu độ cao Geoid GNSS-Thủy chuẩn không phải là hàm điều hòa. Nếu sử dụng trực tiếp dữ liệu độ cao Geoid GNSS-Thủy chuẩn để xây dựng mô hình Geoid cục bộ và ứng dụng mô hình này để nội suy độ cao Geoid cho các điểm trong khu vực sẽ dẫn đến sai lệch về kết quả. Do đó, trong xác định độ cao Geoid từ dữ liệu độ cao GNSS-Thủy chuẩn các loại ảnh hưởng này cần phải được xem xét, loại bỏ trước khi thực hiện nội suy trong bước tính toán và được phục hồi lại cho các kết quả nội suy sau khi tính. Đây chính là cơ sở ứng dụng kỹ thuật RCR trong bài toán nội suy độ cao Geoid từ mô hình Geoid cục bộ được xây dựng dựa trên dữ liệu độ cao Geoid GNSS-Thủy chuẩn.

Tạp chí Khoa học Giao thông Vận tải, Tập 74, Số 5 (06/2023), 582-596

2.2. Kỹ thuật Loại bỏ - Tính toán – Phục hồi (RCR)

Hình 1. Các thành phần bước sóng Geoid.

Theo kỹ thuật RCR, độ cao Geoid là tổng của ba thành phần và được xác định theo công thức:

$$N = N_{GGM} + N_{RTM} + N_{Res} \tag{2}$$

Trong đó: N_{GGM} - độ cao Geoid tương ứng với thành phần bước sóng dài được xác định từ mô hình trường trọng lực toàn cầu; N_{RTM} - độ cao Geoid ứng với thành phần bước sóng ngắn từ mô hình số địa hình (DTM) và N_{Res} - độ cao Geoid còn dư (hay phần dư - residual) là giá trị được xác định từ kết quả nội suy. Trong thành phần độ cao Geoid N, bước sóng của mô hình trọng trường toàn cầu N_{GGM} đóng góp ở thành phần có bước sóng dài trong khoảng cách từ 100 km trở lên, bước sóng của địa hình N_{RTM} đóng góp ở khoảng cách < 20 km.

Các bước tính toán theo kỹ thuật RCR:

* *Bước loại bỏ*: Độ cao Geoid N được loại bỏ thành phần N_{GGM} và N_{RTM} còn lại độ cao geoid còn dư N_{Res} theo công thức:

$$N_{\text{Res}} = N - N_{GGM} - N_{RTM} \tag{3}$$

* *Bước tính toán*: Từ bộ dữ liệu độ cao geoid còn dư, xây dựng mô hình geoid cục bộ còn dư cho khu vực khảo sát, có nhiều phương pháp có thể áp dụng như phương pháp Collocation bình phương nhỏ nhất, phương pháp Kringking, phương pháp trọng số khoảng cách nghịch đảo, phương pháp dựa trên mô hình mạng lưới tam giác không đồng nhất (TIN). Dựa trên mô hình được xây dựng, thực hiện nội suy cho các điểm cần xác định.

* *Bước phục hồi*: Phục hồi lại thành phần độ cao geoid N_{GGM}^{noisuy} từ mô hình trường trọng lực toàn cầu và độ cao N_{RTM}^{noisuy} từ mô hình số địa hình cho điểm nội suy. Độ cao Geoid của điểm nội suy được xác định theo công thức:

$$N^{Noi\,suy} = N_{Res}^{Noi\,suy} + N_{GGM}^{Noi\,suy} + N_{RTM}^{Noi\,suy}$$
(4)

Độ cao geoid N_{GGM} được xác định theo công thức [8]:

$$N_{GGM} = \frac{GM}{r\gamma_0} \sum_{L=2}^{N_{max}} \left(\frac{a}{r}\right)^L \sum_{M=0}^L \left(\overline{C}_{L,M} \cos(m\lambda) + \overline{S}_{L,M} \sin(m\lambda)\right) \overline{P}_{L,M} (\sin\varphi')$$
(5)

với: GM là hằng số trọng trường địa tâm tương ứng với mô hình thế trọng trường Trái Đất của mô hình sử dụng tính; r là bán kính địa tâm của điểm xét; *a* là bán trục lớn của ellipsoid; $\overline{P}_{L,M}(\sin \varphi')$ là hàm Legendre kết hợp đã chuẩn hóa; N_{max} là mức tối đa của mô hình thế trọng trường Trái Đất sử dụng tính; $\overline{C}_{L,M}$, $\overline{S}_{L,M}$ – các giá trị của hàm điều hòa cầu tương ứng với mức L, hạng M đã chuẩn hóa. Trong nội dung thực nghiệm, thành phần độ cao geoid N_{GGM} được tính toán trực tiếp trên trang Trung tâm quốc tế về các mô hình Trái đất toàn cầu ICGEM, <u>http://icgem.gfz-potsdam.de/home</u>.

Độ cao geoid N_{RTM} được xác định theo công thức [5]:

$$N_{RTM} = \frac{V_{RTM}\left(P\right)}{\overline{\gamma}_{P}} \tag{6}$$

với $V_{RTM}(P)$ là thế hấp dẫn của khối lượng vật chất địa hình nằm giữa mặt địa hình thực và mặt nằm ngang đi qua điểm Q tương ứng với điểm P, $V_{RTM}(P)$ được xác định theo tổng các lăng trụ $V_{RTM}(P) = \sum_{i=1}^{K} V_i^{RTM}(P)$, K - tổng số các ô chuẩn của mô hình số độ cao được sử dụng. Các giá trị thành phần độ cao geoid N_{RTM} trong phần thực nghiệm được xác định bằng module TC trong bộ GRAVSOFT thuộc trường đại học kỹ thuật Đan Mạch [4].

2.3. Ứng dụng kỹ thuật RCR nội suy độ cao geoid từ dữ liệu độ cao geoid GNSS-Thủy chuẩn

Dưa trên tập các điểm khống chế cơ sở thuộc khu vực khảo sát có toa đô và đô cao trắc địa được đo bằng công nghệ GNSS, đồng thời các điểm này lại được xác định độ cao thủy chuẩn bằng phương pháp đo cao hình học được gọi là điểm song trùng GNSS-Thủy chuẩn. Các điểm song trùng GNSS-Thủy chuẩn cho phép xác đinh được trực tiếp đô cao geoid với đô chính xác cao và giá trị này chứa đây đủ ảnh hưởng của các thành phần bước sóng. Vì vậy, trong bước loại bỏ, dữ liệu độ cao geoid N của các điểm song trùng cần được loại bỏ ảnh hưởng thành phần bước sóng dài từ mô hình trường trong lực toàn câu và thành phần bước sóng ngắn do ảnh hưởng của địa hình. Việc loại bỏ được thực hiện theo công thức (1). Trong bước tính toán, dựa trên tập dữ liêu đô cao geoid còn dư, việc xây dựng mô hình geoid còn dư cục bô được nhóm tác giả thực hiện dựa trên mô hình TIN bằng phần mềm Autocad Civil, đây là phần mềm được ứng dung rông rãi trong lĩnh vực công trình. Từ tập các điểm song trùng đô cao geoid còn dự, thực hiện xây dựng mô hình geoid cục bộ cho khu vực khảo sát bằng mô hình TIN. Dựa trên mô hình TIN được xây dựng, có thể nội suy độ cao geoid còn dư cho các điểm tùy ý thuộc phạm vi mô hình. Với bước phục hồi, các điểm nội suy sẽ được phục hồi lại thành phần bước sóng dài từ mô hình trường trọng lực toàn cầu và thành phần bước sóng ngắn từ mô hình số địa hình, viêc phục hồi được thực hiện theo công thức (6).

Trong nội dung bài báo, bước loại bỏ và phục hồi đối với ảnh hưởng của bước sóng dài trong tính toán thực nghiệm, mô hình trường trọng lực toàn cầu được sử dụng là mô hình EGM2008 [5], việc lựa chọn mô hình EGM2008 được sử dụng trong tính toán do hiện nay các phần mềm xử lý GNSS ở Việt Nam đều cài đặt và sử dụng mô hình EGM2008 trong đo đạc, tính toán bình sai lưới. Đối với việc loại bỏ và phục hồi ảnh hưởng của bước sóng ngắn được dựa trên mô hình SRTM độ phân giải 1 giây [6], dữ liệu mô hình được download từ trang https://earthexplorer.usgs.gov/.

2.4. Đánh giá độ chính xác kết quả nội suy

Đánh giá độ chính xác kết quả tính là một trong những nội dung quan trọng trong một phương pháp nghiên cứu. Việc đánh giá nhằm mục đích đánh giá độ chính xác của kết quả tính, đồng thời đánh giá lại chất lượng dữ liệu đầu vào. Dữ liệu độ cao geoid của các điểm GNSS-Thủy chuẩn là nguồn dữ liệu có độ chính xác cao nhất, là nguồn dữ liệu vừa đóng vai trò là dữ liệu tham gia tính nội suy độ cao geoid theo kỹ thuật RCR, đồng thời là nguồn dữ liệu gốc để đánh giá độ chính xác kết quả tính. Đối với các điểm song trùng GNSS-Thủy chuẩn, dựa trên giá trị độ cao geoid được tính trực tiếp từ độ cao trắc địa và độ cao thủy chuẩn theo công thức (1), đồng thời tại các điểm này ta cũng nội suy được giá trị độ cao geoid theo kỹ thuật RCR. Khi đó, độ lệch giữa kết quả tính so với kết quả gốc của điểm đánh giá thứ i và độ lệch trung bình được xác định theo công thức:

$$\Delta N_i = N_i^{GNSS-TC} - N_i^{noisuy}$$
(7) $\delta N_{TB} = \frac{\left[\Delta N\right]}{n}$ (8)

n - số lượng điểm song trùng được sử dụng để đánh giá; $N_i^{\text{CNSS-TC}}$ - độ cao geoid được tính trực tiếp theo công thức (1) và N_i^{noisuy} - độ cao geoid nội suy tương ứng với điểm đánh giá thứ i;

Theo Nguyễn Cao Văn và các tác giả (2018)[7], nếu δN_{TB} xấp xỉ bằng 0, chứng tỏ giữa hai giá trị không có độ lệch hệ thống, khi đó, độ chính xác của kết quả tính được đánh giá theo công thức Gauss:

$$\delta = \pm \sqrt{\frac{\left[\Delta N_i \ \Delta N_i\right]}{n}} \tag{9}$$

Nếu δN_{TB} khác 0, chứng tỏ giữa hai giá trị có độ lệch hệ thống. Khi đó, độ chính xác của kết quả tính được đánh giá theo công thức Bessel:

$$\delta = \pm \sqrt{\frac{\sum_{i=1}^{n} \left(\delta N_{TB} - \Delta N_i\right)^2}{n-1}}$$
(10)

2.5. Quy trình nội suy xác định độ geoid N theo kỹ thuật RCR từ dữ liệu độ cao geoid GNSS-Thủy chuẩn

Từ cơ sở lý thuyết được trình bày, nhóm tác giả đã xây dựng được quy trình nội suy xác định độ cao geoid của các điểm tùy ý trong khu vực khảo sát theo kỹ thuật RCR dựa trên tập

dữ liệu độ cao geoid N của các điểm song trùng GNSS-Thủy chuẩn, sơ đồ quy trình được thể hiện trong hình 2.

QUY TRÌNH NỘI SUY ĐỘ CAO GEOID N THEO KỸ THUẬT RCR

Hình 2. Sơ đồ quy trình nội suy độ cao geoid theo kỹ thuật RCR.

3. THỰC NGHIỆM

Trong nội dung bài báo, nhóm tác giả đã lựa chọn hai khu vực để thực nghiệm tính toán xây dựng mô hình Geoid cục bộ. Khu vực một thuộc tỉnh Phú Yên, có địa hình bằng phẳng độ cao trung bình thuộc khu vực khảo sát ≈ 3 m. Khu vực hai thuộc tỉnh Lào Cai, nơi thuộc địa hình núi cao, độ cao trung bình khu vực khảo sát ≈ 1500 m.

Để đánh giá được độ chính xác khi xây dựng mô hình Geoid cục bộ, nhóm tác giả đã lựa chọn tập các điểm đánh giá là các điểm DC, do các điểm này cũng đồng thời có độ cao trắc địa từ đo cao GNSS và độ cao thủy chuẩn từ phương pháp đo cao hình học, có cơ sở để kiểm tra. Các dữ liệu được xử lý trên hệ tọa độ và hệ quy chiếu WGS84 quốc tế, độ cao thủy chuẩn theo hệ Hòn Dấu.

3.1. Kết quả thực nghiệm khu vực 1

Đây là khu vực có địa hình bằng phẳng, diện tích khu vực khoảng 438ha. Do địa hình khu vực này tương đối bằng phẳng, vì vậy trong bước loại bỏ và phục hồi chỉ thực hiện loại bỏ thành phần bước sóng dài của mô hình trường trọng lực toàn cầu (EGM2008), bỏ qua bước sóng ngắn do ảnh hưởng của địa hình khi thực hiện nội suy.

Từ bộ dữ liệu gồm 24 điểm song trùng hạng IV và địa chính cơ sở, nhóm tác giả đã lựa chọn 17 điểm (hạng IV và địa chính cơ sở) để xây dựng mô hình geoid cục bộ, 07 điểm địa chính cơ sở được sử dụng để đánh giá độ chính xác mô hình. Số liệu tính toán và đánh giá được thể hiện trong bảng 1, vị trí các điểm tính và đánh giá được thể hiện trong hình 3.

STT	Tên điểm	$\mathbf{H}_{\mathrm{WGS84}}$	h	Ν	Ghi chú
1	GPS.IV-01	4,601	3,115	1,486	
2	GPS.IV-02	5,613	4,096	1,517	
3	GPS.IV-03	4,052	2,561	1,491	
4	GPS.IV-04	3,820	2,339	1,481	
5	GPS.IV-05	4,413	2,873	1,540	
6	GPS.IV-06	4,433	2,911	1,522	
7	GPS.IV-07	4,548	3,032	1,516	
8	GPS.IV-08	4,578	3,023	1,555	
9	DCI-02	5,900	4,393	1,507	Điểm tính toán
10	DCI-03	3,922	2,432	1,490	
11	DCI-05	4,574	3,041	1,533	
12	DCI-08	4,347	2,843	1,504	
13	DCI-09	4,528	2,999	1,529	
14	DCI-12	4,733	3,192	1,541	
15	DCI-13	3,876	2,313	1,563	
16	DCI-15	4,031	2,488	1,543	
17	DCI-16	4,186	2,631	1,555	
18	DCI-01	5,597	4,104	1,493	
19	DCI-04	4,298	2,800	1,498	
20	DCI-06	4,220	2,726	1,494	
21	DCI-07	3,688	2,158	1,530	Điểm đánh giá
22	DCI-10	3,630	2,092	1,538	
23	DCI-11	4,625	3,102	1,523	
24	DCI-14	3,896	2,337	1,559	

Bảng 1. Số liệu tính toán và đánh giá thuộc tỉnh Phú Yên.

Dựa trên 17 điểm được sử dụng để tính toán xây dựng mô hình, thực hiện loại bỏ ảnh hưởng của bước sóng dài từ mô hình EGM2008, được dữ liệu độ cao geoid còn dư. Kết quả tính độ cao geoid còn dư và đánh giá độ lệch được thể hiện trong bảng 2 và bảng 3.

Bảng 2. Độ cao geoid còn dư sau khi loại bỏ ảnh hưởng bước sóng dài từ mô hình EGM2008.

Tân điểm		Hệ tọa độ WGS84								Ν	Negm2008	N _{Res}
i en diem		Vĩ	độ	Kinh độ				Н				
GPS.IV-01	13	6	17,544	10	09	15	54,765	4,601	3,115	1,486	1,997	-0,511

Tîn điểm			H	lệ tọa độ W	GS8 4	l –		h	Ν	N _{egm2008}	N _{Res}
i en alem		Vĩ	độ	Ki	nh đậ)	Н				
GPS.IV-02	13	6	22,880	109	16	54,692	5,613	4,096	1,517	2,001	-0,484
GPS.IV-03	13	6	7,550	109	16	29,485	4,052	2,561	1,491	2,010	-0,519
GPS.IV-04	13	5	41,300	109	16	9,048	3,820	2,339	1,481	2,028	-0,548
GPS.IV-05	13	5	39,178	109	16	47,319	4,413	2,873	1,540	2,037	-0,497
GPS.IV-06	13	5	52,196	109	17	17,080	4,433	2,911	1,522	2,032	-0,510
GPS.IV-07	13	5	8,727	109	16	20,490	4,548	3,032	1,516	2,058	-0,542
GPS.IV-08	13	5	13,006	109	16	51,368	4,578	3,023	1,555	2,061	-0,506
DCI-02	13	6	25.023	109	16	39,192	5,900	4,393	1,507	1,997	-0,490
DCI-03	13	5	59,086	109	16	1,757	3,922	2,432	1,490	2,013	-0,522
DCI-05	13	6	4,041	109	16	46,066	4,574	3,041	1,533	2,016	-0,483
DCI-08	13	5	51,257	109	17	0,874	4,347	2,843	1,504	2,029	-0,526
DCI-09	13	5	27,649	109	16	14,264	4,528	2,999	1,529	2,041	-0,512
DCI-12	13	5	35,409	109	17	23,703	4,733	3,192	1,541	2,049	-0,507
DCI-13	13	5	26,986	109	16	45,882	3,876	2,313	1,563	2,047	-0,484
DCI-15	13	5	21,265	109	17	13,930	4,031	2,488	1,543	2,059	-0,516
DCI-16	13	5	25,947	109	17	28,924	4,186	2,631	1,555	2,058	-0,503

Transport and Communications Science Journal, Vol 74, Issue 5 (06/2023), 582-596

Bảng 3. Kết quả đánh giá độ lệch của 17 điểm tính toán xây dựng mô hình thuộc khu vực 1.

STT	Độ lệch	Giá trị (m)
1	Trung bình	-0,509
2	Lớn nhất	-0,483
3	Nhỏ nhất	-0,548
4	Độ lệch chuẩn	0,019

Dữ liệu dị thường độ cao tính của khu vực một sau khi thực hiện loại bỏ độ lệch trung bình là dữ liệu cơ sở để xây dựng mô hình geoid cục bộ còn dư. Việc xây dựng được thực hiện theo mô hình TIN dựa trên phần mềm Autocad Civil. Dựa trên mô hình TIN được xây dựng, có thể nội suy độ cao geoid còn dư cho các điểm tùy ý thuộc phạm vị mô hình, trong đó có các điểm được sử dụng để đánh giá độ chính xác. Hình 2 thể hiện bề mặt geoid cục bộ, mô hình TIN được xây dựng và kết quả nội suy cho các điểm đánh giá được thể hiện trong hình 3.

Hình 3. Mô hình geoid cục bộ khu vực 1.

Tạp chí Khoa học Giao thông Vận tải, Tập 74, Số 5 (06/2023), 582-596

Hình 4. Mô hình TIN và dị thường độ cao các điểm đánh giá (khu vực 1).

Các giá trị độ cao geoid còn dư được nội suy từ mô hình TIN của các điểm đánh giá sẽ được hiệu chỉnh lại giá trị độ lệch trung bình và phục hồi lại thành phần bước sóng dài từ mô hình EGM2008. Dựa trên số liệu độ cao geoid được tính trực tiếp theo công thức (1) và số liệu độ cao geoid nội suy sau khi được phục hồi của các điểm đánh giá, kết quả so sánh và đánh giá độ chính xác độ cao geoid nội suy theo kỹ thuật RCR cho khu vực 1 được thể hiện trong bảng 4 và bảng 5.

Tên		Hệ tọa độ WGS84							N _{Res} ^{noisuy} + Mean	Negm2008	Nphục hồi	Ngốc	Chênh lệch
điểm	Vĩ độ		độ	Kinh độ			Н						
DCI-01	13	6	18,501	109	16	20,175	5,597	4,104	-0,5041	1,999	1,4952	1,493	0,002
DCI-04	13	6	4,157	109	16	13,513	4,298	2,800	-0,5200	2,010	1,4901	1,498	-0,008
DCI-06	13	6	4,599	109	17	2,802	4,220	2,337	-0,5041	2,018	1,5143	1,494	0,020
DCI-07	13	5	51,722	109	16	32,673	3,688	2,726	-0,5157	2,024	1,5079	1,530	-0,022
DCI-10	13	5	35,754	109	16	28,406	3,630	2,158	-0,5123	2,036	1,5240	1,538	-0,014
DCI-11	13	5	35,789	109	17	6,649	4,625	3,102	-0,5192	2,044	1,5250	1,523	0,002
DCI-14	13	5	20,946	109	16	36,255	3,896	2,092	-0,5042	2,051	1,5465	1,559	-0,013

Bảng 4. Kết quả nội suy xác định độ geoid theo kỹ thuật RCR của các điểm đánh giá thuộc khu vực 1.

STT	Độ lệch	Giá trị (m)
1	Trung bình	-0,004
2	Lớn nhất	0,020
3	Nhỏ nhất	-0,022
4	Độ lệch chuẩn	0,014

Bảng 5. Đánh giá độ chính xác kết quả nội suy xác định độ geoid N theo kỹ thuật RCR dựa trên các điểm đánh giá của khu vực 1.

3.2. Kết quả thực nghiệm khu vực 2

1.908

49,349

51,867

14,125

22,625

36,386

45,441

48,219

39,976

40,182

29,408

19,309

103

103

103

103

103

103

103

103

103

103

103

103

37

38

38

38

37

37

38

38

38

38

39

39

IV-04

IV-06

IV-07

IV-08

IV-09

IV-10

IV-11

IV-12

IV-13

IV-14

IV-15

IV-16

22

22

22

22

22

22

22

22

22

22

22

22

38

37

37

38

38

38

38

38

38

38

38

38

Đây là khu vực có địa hình đồi núi cao, diện tích khu vực khoảng 1755ha. Trong bước loại bỏ và phục hồi thực hiện cả đối với bước sóng dài từ mô hình EGM2008 và bước sóng ngắn do ảnh hưởng của địa hình bằng mô hình SRTM độ phân giải 1 giây.

Từ bộ dữ liệu 59 điểm song trùng GNSS-Thủy chuẩn thuộc tỉnh Lào Cai, nhóm tác giả lựa chọn 42 điểm (hạng IV và điểm DC) là điểm tính toán thực hiện xây dựng mô hình cục bộ cho khu vực khảo sát của khu vực thực nghiệm 2 theo kỹ thuật RCR, 17 điểm còn lại được sử dụng để đánh giá độ chính xác của mô hình cục bộ. Hình 4, thể hiện vị trí các điểm được sử dụng tính toán xây dựng mô hình geoid cục bộ và vị trí các điểm đánh giá độ chính xác kết quả mô hình.

Từ bộ dữ liệu các điểm song trùng sử dụng tính toán, thực hiện tính giá trị độ cao geoid cho các điểm tính từ mô hình EGM2008 và mô hình số địa hình SRTM độ phân giải 1 giây, tiến hành loại bỏ ảnh hưởng do bước sóng dài của mô hình EGM2008 và ảnh hưởng bước sóng ngắn do địa hình cho các điểm tính được dữ liệu độ cao geoid còn dư. Bảng 6 thể hiện kết quả độ cao geoid của các thành phần và độ cao geoid còn dư trong bước loại bỏ của khu vực 2. Kết quả đánh giá độ lệch độ cao geoid còn dư được thể hiện trong bảng 7.

	vực 2 (dơn vị: m).											
Tên điểm		Tọa độ WGS84							N	N _T	Nma	N-
		Vĩ độ Kinh độ						11	11	1NEgm2008	INTC	⊥NRes
IV-01	22	37	43,246	103	37	35,477	1828,199	1859,691	-31,492	-31,029	0,067	-0,530
IV-03	22	37	59,120	103	37	38,444	1941,827	1973,351	-31,524	-31,061	0,070	-0,532

1941,365

1949,110

1924,815

1913,417

1956,880

1933,961

1889,285

1869,946

1795,349

1798,572

1699,825

1727,594

1972,888

1980,680

1956,391

1945,025

1988,462

1965,567

1920.956

1901,639

1827,035

1830,242

1731,539

1759,290

-31.523

-31,570

-31,576

-31,608

-31,582

-31,606

-31,671

-31,693

-31,686

-31,670

-31,714

-31,696

-31.081

-31,106

-31,118

-31,130

-31,121

-31,150

-31,183

-31,199

-31,194

-31,217

-31,217

-31,209

0.074

0,077

0,078

0,076

0.075

0,077

0.080

0,079

0,075

0.071

0,067

0,069

-0,515

-0,541

-0,535

-0,554

-0,537

-0,534

-0.568

-0,573

-0,567

-0,524

-0,564

-0,556

51,248

29,868

36,569

13,613

51,633

54,017

8,750

18,005

27,690

47,431

3,610

11,492

Bảng 6. Dị thường độ cao còn dư sau khi loại bỏ ảnh hưởng bước sóng dài và bước sóng ngắn của khu vực 2 (đơn vị: m).

592	2
-----	---

Tên			Т	'ọa độ	WGS	584		1.	NT	N	N	Npor
điểm		Vĩ	độ		Kinh	độ	Н	n	IN	INEgm2008	INTC	INRes
IV-17	22	38	6,997	103	39	7,907	1754,794	1786,452	-31,658	-31,184	0,074	-0,548
IV-18	22	37	55,611	103	39	9,329	1786,991	1818,633	-31,642	-31,166	0,078	-0,554
IV-19	22	37	47,743	103	39	19,909	1834,431	1866,083	-31,652	-31,167	0,085	-0,570
IV-20	22	38	30,510	103	39	28,994	1661,849	1693,590	-31,741	-31,250	0,066	-0,557
IV-21	22	38	45,455	103	39	35,924	1679,989	1711,746	-31,757	-31,284	0,062	-0,535
IV-22	22	39	0,172	103	39	41,785	1685,669	1717,473	-31,804	-31,317	0,058	-0,545
IV-23	22	38	51,186	103	38	33,331	1822,910	1854,623	-31,713	-31,221	0,076	-0,567
IV-24	22	39	6,666	103	38	21,250	1923,316	1955,047	-31,731	-31,238	0,083	-0,576
IV-25	22	39	19,587	103	38	26,728	1929,064	1960,832	-31,768	-31,270	0,085	-0,583
IV-26	22	39	29,983	103	38	8,119	1948,847	1980,613	-31,766	-31,273	0,094	-0,587
IV-27	22	39	44,178	103	38	5,190	1978,671	2010,485	-31,814	-31,301	0,099	-0,612
IV-28	22	39	53,888	103	38	0,987	2000,280	2032,121	-31,841	-31,319	0,102	-0,624
IV-29	22	38	22,471	103	37	18,290	1800,042	1831,594	-31,552	-31,083	0,059	-0,527
IV-30	22	38	39,648	103	37	18,563	1760,230	1791,836	-31,606	-31,118	0,058	-0,546
IV-31	22	38	57,934	103	37	27,419	1819,913	1851,559	-31,646	-31,164	0,069	-0,550
IV-32	22	39	12,274	103	37	20,386	1871,257	1902,945	-31,688	-31,188	0,068	-0,568
IV-33	22	39	26,363	103	37	24,809	1942,662	1974,371	-31,709	-31,223	0,078	-0,564
IV-34	22	39	39,046	103	37	28,005	1973,279	2004,998	-31,719	-31,255	0,086	-0,551
IV-35	22	40	10,637	103	37	26,972	2098,514	2130,335	-31,821	-31,329	0,095	-0,587
IV-36	22	37	57,689	103	37	22,309	1790,412	1821,921	-31,509	-31,040	0,062	-0,531
IV-38	22	38	20,382	103	36	53,719	1665,401	1696,918	-31,517	-31,053	0,041	-0,505
IV-39	22	38	36,278	103	36	46,496	1617,646	1649,187	-31,541	-31,078	0,032	-0,495
IV-40	22	38	51,189	103	36	56,815	1562,792	1594,367	-31,575	-31,119	0,037	-0,493
IV-41	22	39	5,645	103	36	56,000	1528,780	1560,401	-31,621	-31,150	0,037	-0,509
IV-42	22	39	23,626	103	36	51,225	1518,069	1549,715	-31,646	-31,185	0,037	-0,497
IV-45	22	39	35,455	103	36	30,677	1426,285	1457,980	-31,695	-31,195	0,020	-0,520
IV-49	22	39	20,291	103	36	15,944	1264,677	1296,340	-31,663	-31,146	0,002	-0,519
IV-50	22	39	5,902	103	36	12,058	1285,180	1316,811	-31,631	-31,109	- 0,001	-0,521

Tạp chí Khoa học Giao thông Vận tải, Tập 74, Số 5 (06/2023), 582-596

Bảng 7, Kết quả đánh giá độ lệch của 42 điểm tính toán xây dựng mô hình thuộc khu vực 2,

STT	Độ lệch	Giá trị (m)
1	Trung bình	-0,547
2	Lớn nhất	-0,493
3	Nhỏ nhất	-0,624
4	Độ lệch chuẩn	0,030

Dựa trên bộ dữ liệu độ cao geoid còn dư của 42 điểm sau khi được loại bỏ trị trung bình, thực hiện xây dựng mô hình geoid cục còn dư cho khu vực khảo sát (hình 4). Từ mô hình TIN được xây dựng có thể thực hiện nội suy độ cao geoid cho các điểm cần xác định trong phạm vi mô hình và đồng thời cho các điểm đánh giá (Hình 5).

Transport and Communications Science Journal, Vol 74, Issue 5 (06/2023), 582-596

Hình 5. Mô hình geoid cục bộ khu vực 2.

Hình 6. Mô hình TIN và dị thường độ cao nội suy của các điểm đánh giá (khu vực 2).

Độ cao geoid còn dư nội suy của các điểm đánh giá sẽ được hiệu chỉnh lại độ lệch trung bình, phục hồi lại ảnh hưởng bước sóng dài và bước sóng ngắn, dựa trên kết quả độ cao geoid nội suy đã được phục hồi và độ cao geoid được tính trực tiếp từ số liệu GNSS-Thủy chuẩn theo công thức (1), chênh lệch và độ chính xác khu vực khảo sát tỉnh Lào Cai được thể hiện trong bảng 8, bảng 9.

Tên điểm			Т	ọa độ V	VGS8	4	-	h	N _{Res} + Moon	Negm2008	Nтс	Nnoisuv	Ngốc	Chênh
diem	Vĩ độ Kinh độ						Н		Mean	U				lệch
II06	22	38	1,245	103	38	2,561	1940,923	1972,550	-0,580	-31,094	0,075	-31,598	-31,647	0,049
II07	22	37	59,383	103	38	19,154	1901,256	1932,745	-0,594	-31,110	0,077	-31,628	-31,679	0,051

Bảng 8. Kết quả nội suy độ cao geoid theo kỹ thuật RCR của các điểm đánh giá thuộc khu vực 2.

Tên			Т	ọa độ V	VGS8	4		h	N _{Res} +	Negm2008	NTC	Nnoisuv	Ngốc	Chênh
điêm		Vĩ ở	tộ		Kinh	độ	Н		Mean	r (cgili2000	1.10	1 (noisuy	1,800	lệch
II13	22	38	9,938	103	37	53,484	1941,181	1972,781	-0,574	-31,099	0,075	-31,598	-31,631	0,033
II15	22	38	23,151	103	38	5,710	1926,998	1958,585	-0,582	-31,138	0,077	-31,643	-31,629	-0,014
II18	22	38	43,902	103	38	32,170	1816,043	1847,763	-0,575	-31,206	0,075	-31,706	-31,720	0,014
II23	22	38	13,101	103	39	9,125	1748,511	1780,211	-0,580	-31,195	0,071	-31,704	-31,651	-0,053
II38	22	38	54,663	103	38	20,781	1882,547	1914,257	-0,576	-31,214	0,080	-31,710	-31,674	-0,036
II51	22	38	14,330	103	37	23,280	1828,750	1860,202	-0,570	-31,073	0,063	-31,580	-31,552	-0,028
II54	22	38	48,850	103	37	14,891	1731,703	1763,374	-0,535	-31,133	0,055	-31,613	-31,671	0,058
1155	22	39	4,458	103	37	19,045	1817,508	1849,163	-0,534	-31,170	0,063	-31,641	-31,695	0,054
II58	22	39	0,955	103	37	35,876	1904,443	1936,080	-0,548	-31,179	0,076	-31,652	-31,599	-0,053
II59	22	39	12,589	103	37	27,931	1912,656	1944,428	-0,535	-31,196	0,074	-31,656	-31,700	0,044
II64	22	39	51,874	103	37	24,880	2006,033	2037,733	-0,484	-31,282	0,088	-31,678	-31,700	0,022
II73	22	38	41,602	103	36	56,384	1589,694	1621,198	-0,512	-31,099	0,038	-31,573	-31,535	-0,038
II78	22	39	16,212	103	36	37,908	1441,367	1472,941	-0,468	-31,156	0,021	-31,604	-31,544	-0,060
II79	22	39	22,442	103	36	57,539	1540,231	1571,926	-0,468	-31,189	0,044	-31,613	-31,646	0,033
II80	22	39	33,211	103	36	50,183	1505,890	1537,640	-0,455	-31,207	0,039	-31,622	-31,681	0,059

Tạp chí Khoa học Giao thông Vận tải, Tập 74, Số 5 (06/2023), 582-596

Bảng 9. Đánh giá độ chính xác kết quả nội suy xác định độ geoid N theo kỹ thuật RCR dựa trên các điểm đánh giá của khu vực 2 (đơn vị: m).

STT	Độ lệch	Giá trị (m)
1	Trung bình	0,008
2	Lớn nhất	0,059
3	Nhỏ nhất	-0,060
4	Độ lệch chuẩn	0,044

Nhận xét: Dựa vào kết quả tính toán thực nghiệm tại hai khu vực có địa hình khác nhau, kết quả đánh giá độ chính xác: khu vực một có độ lệch trung bình -0,004 m, độ lệch chuẩn đạt 0,014 m; khu vực hai độ lệch trung bình 0,008 m, độ lệch chuẩn đạt 0,044 m,

Với kết quả đạt được như trên, việc xác định độ cao thủy chuẩn từ kết quả đo GNSS dựa trên mô hình geoid cục bộ có thể đạt độ chính xác tương đương với lưới độ cao thủy chuẩn hạng III, và hạng IV nhà với khu vực miền núi. Với độ chính xác này đáp ứng được các yêu cầu của công tác trắc địa trong giai đoạn khảo sát thiết kế và thi công các công trình.

3. KẾT LUẬN

Hiện nay, mô hình Geoid quốc gia của Việt Nam chưa có nên việc thực hiện xây dựng được mô hình geoid cục bộ là cần thiết. Phương pháp xây dựng mô hình geoid cục bộ dựa trên tập hợp các điểm khống chế cơ sở là các điểm song trùng vừa có độ cao trắc địa được xác định bằng công nghệ GNSS vừa có độ cao thủy chuẩn là phù hợp và dễ dàng thực hiện. Trong bài báo, nhóm tác giả sử dụng kỹ thuật RCR cho phép nội suy độ cao thủy chuẩn từ kết quả đo GNSS, kết quả thực nghiệm đã khẳng định tính đúng đắn của phương pháp.

Độ chính xác của mô hình geoid phụ thuộc vào độ chính xác của việc xác định độ cao trắc địa bằng đo GPS và độ cao thủy chuẩn bằng đo thủy chuẩn hình học tại các điểm song trùng.

Cần lưu ý đối với các khu vực thuộc địa hình miền núi, cần thiết phải tính đến ảnh hưởng của địa hình trong bước loại bỏ và phục hồi khi thực hiện nội suy theo kỹ thuật RCR. Ngoài ra để đảm bảo được việc nội suy độ cao geoid cho toàn bộ các điểm khảo sát, dữ liệu GNSS-Thủy

chuẩn cần phải có các điểm nằm trên đường bao ngoài của khu vực khảo sát, đồng thời vị trí và mật độ các điểm song trùng cần phân bố đều theo đặc trưng địa hình.

TÀI LIỆU THAM KHẢO

[1]. Nguyễn Duy Đô, Sisomphone Insisiengmay, Đánh giá độ chính xác mô hình Geoid, Tạp chí Khoa học Đo đạc và Bản đồ, 3 (2012) 25-29.

[2]. R. Forsberg, C. C. Tscherning, The use of height data in gravity field approximation by collocation, Journal of Geophysical Research: Solid Earth., 86 (1981) 7843-7854. https://doi.org/10.1029/JB086iB09p07843

[3]. K. P. Schwarz, M. G. Sideris, R. Forsberg, The use of FFT techniques in physical geodesy, Geophys. J. Int., 100 (1990) 485-514. <u>https://doi.org/10.1111/j.1365-246X.1990.tb00701.x</u>

[4]. Rene Forsberg, C. C. Tscherning, An overview manual for the GRAVSOFT geodetic gravity field modelling programs, Contract report for JUPEM, 2008.

[5]. N. K. Pavlis, S. A. Holmes, S. C. Kenyon, J. K. Factor, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of geophysical research: solid earth., 117 (B4) (2012). <u>https://doi.org/10.1029/2011JB008916</u>

[6]. Franz Barthelmes, Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). <u>http://icgem.gfz-potsdam, de, 2009</u>.

[7]. Nguyễn Cao Văn, Ngô Văn Thứ, Trần Thái Ninh, Giáo trình lý thuyết xác suất và thống kê toán, NXB Đại Học Kinh Tế Quốc Dân, 2018.

[8]. Vũ Đình Toàn, Xây dựng mô hình Geoid cục bộ cho khu vực Cẩm Phả - Mông Dương, Tạp chí KHKT Mỏ - Địa Chất, 41 (2013) 70-75.

[9]. Đặng Nam Chinh, Một số vấn đề trong xử lý số liệu trắc địa cao cấp, Bài giảng chuyên đề tiến sĩ, Bộ môn Trắc địa cao cấp, Trường Đại học Mỏ - Địa chất, 2011.

[10]. Đặng Nam Chinh, Nội suy dị thường độ cao và độ chính xác xác định độ cao bằng công nghệ GPS, Đặc san Khoa học và công nghệ địa chính, 12 (1997).

[11]. Nguyễn Duy Đô, Đặng Nam Chinh, Chính xác hóa dị thường độ cao EGM2008 dựa trên số liệu GPS-thuỷ chuẩn trên phạm vi cục bộ vùng Tây Nguyên và duyên hải nam trung bộ, Tạp chí các khoa học về trái đất, 3 (2012) 85-91.

[12]. Hoàng Ngọc Hà, Trương Quang Hiếu, Cơ sở toán học xử lý số liệu trắc địa, NXB Giao thông vận tải, 2003.

[13]. Hà Minh Hòa, Một số vấn đề hiện đại của trắc địa vật lý, Nhà xuất bản khoa học và kỹ thuật, Hà Nội, 2018.

[14]. Trần Quang Học, Nghiên cứu phương pháp chuyền đồ cao qua sông lớn bằng công nghệ GPS khi thành lập lưới độ cao trong xây dựng cầu, Tạp chí khoa học Giao thông Vận tải, số 56 (2016) 26-30.

[15]. Phạm Hoàng Lân, Nghiên cứu các giải pháp nâng cao độ chính xác đo cao GPS trong điều kiện Việt Nam, Báo cáo tổng kết khoa học và kỹ thuật đề tài cấp Bộ (TN-MT), Hà Nội, 2007.

[16]. Phạm Hoàng Lân, Nghiên cứu thiết lập hệ thống độ cao chuẩn thống nhất cho cả lãnh thổ và lãnh hải Việt Nam trên cơ sở không sử dụng mặt nước biển trung bình. Báo cáo tổng kết khoa học và kỹ thuật đề tài cấp Bộ (TN-MT), Hà Nội, 2009.

[17]. Nguyễn Thành Lê, Nguyễn Văn Sáng, Tính chuyển giá trị trọng lực giữa các hệ triều, Tạp chí Khoa học Kỹ thuật Mỏ - Địa Chất, 60 (2019) 67-72.

[18]. Bộ xây dựng, Tiêu chuẩn quốc gia TCVN 9401:2012 : Kỹ thuật đo và xử lý số liệu GPS trong trắc địa công trình, 2012.