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Abstract. Recently, the stability calculation of the functionally graded (FG) plate has attracted many 

scientists, especially when considering the FG plate with many cracks. In this work, the plate is made 

from a new generation composite material consisting of two components, ceramic and metal, with the 

law of continuous exponential material distribution. The plate is placed on a Winkler - Pasternak 

elastic foundation with two background parameters. Then, we used the third-order shear deformation 

plate theory to establish the dynamical equations. After applying Phase-Field theory to simulate the 

crack state, we applied the finite element method to solve the equations to find the critical force 

causing instability of the plate. Next, we investigated the influence of material index, number of 

cracks, crack length, crack shape as well as elastic foundation parameters on the plate stability. The 

results show that the crack length and elastic foundation parameter have the great influence on the 

stability of the FG plate. Especially, the elastic foundation with large shear coefficient, creating high 

stability for the plate. That is very meaningful in exploiting and using plate structure when the cracks 

appear.  
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1. INTRODUCTION  

Structural panels are widely used in practice as well as in engineering. In the field of 

transportation, the plates placed on an elastic foundation are commonly used in constructions 

such as pavement structures, bridge decks, etc. Therefore, in order to design and exploit this 

structure effectively, it is necessary to study the stability of the plate on different elastic bases. 

There are several authors who have researched on this issue. Hiroyuki [1] used the method of 

expanding the power series of displacement components derived from Hamilton's principle to 
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calculate the natural frequency and buckling stress of a dense isotropic plate placed on a 

Pasternak elastic foundation. Using the transformation of the Föppl–von Kármán equations, 

Takuya and Yoshinobu [2] studied the elastic stability of infinitely heterogeneous thin plates 

on a Winkler elastic foundation. Mehdi and Gholam [3] analyzed the buckling and free 

vibration of a plate on a Pasternak elastic foundation using the combination of the finite 

element method and the quadratic differential method. 

The FG plate is a type of plate made from composite materials with many outstanding 

properties. When the FG plate is placed on an elastic foundation, its load-carrying capacity is 

much higher. The study of stability of this plate type placed on an elastic foundation has been 

mentioned by many studies. Huu-Tai and Seung-Eock [4] investigated the buckling of thick 

functionally graded plate resting on elastic foundation using the third-order shear deformation 

theory and the closed-form solution. Foroughi and Azhari [5] discussed the mechanical 

buckling and free vibration of rectangular FG plates on two-parameter elastic foundation due 

to the spline finite strip method approach and the third order shear deformation theory. Using 

hybrid higher-order shear and normal deformation theory and the variational principle, Gupta 

and Talha [6] determined the static and stability characteristics of geometrically imperfect FG 

plate resting on Pasternak elastic foundation. Singh and Harsha [7] employed the non-

polynomial higher-order shear deformation theory with inverse hyperbolic shape function to 

analyse the free vibration and buckling characteristics of a sandwich FG plate resting on the 

Pasternak elastic foundation. Jędrysiak et al. [8] investigated the problem of the stability of 

FG thin plates using the tolerance model and the asymptotic model combined together with 

the Ritz method. 

Although FG plate overcomes many limitations of multi-layer composite panels, defects 

such as cracks may still appear during production or use. In recent years, the calculation of the 

problem with cracks has attracted many scientists' attention. The studies have given a number 

of calculation methods for the structure with cracks such as: finite element method (FEM) [9], 

extended finite element method (XFEM) [10], A novel Ritz procedure [11], the XFEM 

combined with the discrete shear gap method (DSG) [12], ... Recently, the authors Phuc et al. 

[13-17] used the FEM method combined with phase field theory to study the stability and 

vibration of the plate with a crack. 

According to the above review, no author has studied the stability of FG plates with many 

cracks placed on different elastic bases. The article will focus on calculating the stability 

parameter of the plate depending on the number of cracks, crack length, crack inclination 

angle, elastic foundation parameters as well as the ratio of material composition in the plate. 

2. THE EQUATIONS 

Here, the volume of the material components of the FG plate is changed according to the 

power law as in formula (1): 

1

2

n

t

z
V

h

 
= + 

 
; 1b tV V= −   (1) 

where bV and tV are the volume fraction of bottom and top surfaces, respectively; n is 

the indicator according to the rule of power ( 0n  ) to determine the characteristic of 

changing materials along the thickness of the FG plate; z is the thickness coordinate variable 
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with / 2 / 2h z h−    and h is the thickness of the plates. 

Rectangular plate made of FG materials with the properties can be rewritten as: 

( )b t b tP P P P V= + −  (2) 

where P  is the property of the FG material at any position z; 
bP  and 

tP  are the material 

properties of bottom and top sides, respectively. In this study, P  is Young's modulus and 

Poisson's ratio. 

This research introduces a finite element formula for the plate using Shi's the third-order 

shear deformation theory [18] based on the strict kinematic assumption of displacement. It 

can be seen that the kinematics of the displacement which is derived from the elastic formula 

is closer to the finite element method than from the displacement hypothesis. The 

displacements ( , , )x y zU U U at any point M ( ), ,x y z  in the plate can be represented as five 

unknown variables as expression (3): 

( ) ( )
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(3) 

The deformation components: 
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 (4) 

Where , ,x y zU U U are the displacements at the middle plane of the plate in the , ,x y z  

axes, respectively; ,  x y   are the normal rotation angles of the mid-plate along the ,x y  

axes. The commas describe the derivatives corresponding to the variables , .x y  

The relationship of strain and stress components is shown through the following 

expressions: 
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where E is Young’s modulus;   is the Poisson’s ratio. And note that the symbol 

0 1 3 0 2; ; ; ;ε ε ε γ γ in equation (5) is the strain components in equation (4) of the displacements 

in the plate [18]. 

The components of normal force, bending moment, higher-order moment and shear force 

according to the HSDT of Shi [18] are introduced according to the equations: 
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On the basis of elastic theory, the strain energy of the plate (W)  can be written as: 
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 (9) 

where ( )W q  is the potential energy of the plate in the absence of cracks; q  is 

displacement vector. 

The energy of the Pasternak elastic foundation acting on the plate: 

( )
22

2 21
W ,

2

e z z
w z s

U U
s s k U k d

x y


      
= + +     

       
q  (10) 
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with ,w sk k are the coefficients of the elastic foundation Pasternak. In the case of the 

plate supported on a Winkler foundation, sk  is zero. 

To simulate the state of a material, phase field theory introduces a scalar variable s. When 

the material is in the crack region, the variable s is between 0 and 1. For the material in the 

fully cracked state, s=0. In contrast, for a material in its normal state, s=1. In the strain energy 

expression, the variable s is added to show that when the plate is cracked, the energy is 

reduced. 

The total strain energy for the plate can be determined by equation (11): 
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(11) 

where 
CG  is surface energy in Griffith’s theory and 

cl  is a positive constant used to 

represent the crack width. 

0 0

0

0 0
σ

x xy

xy y

  
=  

   

 (12) 

with 
0 0,x y   are the normal stresses of the plate for the x, y axes, respectively; 

0

xy  is the 

shear stress of the plate in the x-y plane, at the time of external forces acting on the plate 

edges. 
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The first-order variation of function ( )W ,t sq  with respect to variables , sq  is defined 

by formula (13) as follows: 

( )

( )

W , , 0

W , , 0

t

t

s

s s

  =

  =

q q

q
 (13) 

From equation (13), the equations for calculating the instability of the cracked plate are 

shown as follows: 
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 
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(14) 

 

(15) 

Substituting the value of s calculated from equation (15) into equation (14), we can find 

the critical buckling load 
cr . In Equation (15), the shape of the crack is described by the 

function ( ) q  according to Borden et al. [19] as follows: 

( ) ( )3

010 .T ,
4

C

c

G
x y

l
 =q  where                                                          (16) 
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( , ) .sin .sin
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, 2 2 2 2 2 2 2
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c c
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l ld x y c L c H L
if x and y x

T x y l

else

  −−    
−  −   − + −     

=   



            . 

where   and c  are the crack inclination angle and length (Fig. 1), respectively; 
cl  is the 

width of the crack; ( , )d x y  is the minimum distance from any point ( , )x y  to the crack 

boundary; L  and H  are the dimensions of the two sides of the plate. 

3. THE RESULTS AND DISCUSSION 

3.1. Comparison results 

 

Figure 1. The geometry of cracked FG plate under uniaxial compression load in x direction. 
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In this section, the rectangular cracked FG plates studied by Liu et al [12] is considered 

here for comparison. The plate have L= H = 0.4m, L/h=100 and the material properties: 

Young's modulus, the Poisson’s ratio of Aluminium (Al) and Zirconium dioxide (ZrO2) are 

70 , 0.3m mE GPa= =  and 151 , 0.3,c cE GPa= = respectively. The plate has the simply support 

boundary condition on four edges (SSSS). The formula for determining the buckling 

parameter of the FG plate according to Liu et al [12]: 
2

2
 cr

c

c

H

D


 =


    where    

3

212(1 )

c
c

c

E h
D =

− 
. (17) 

        

Table 1. Stability coefficient of square FG plate with one crack and boundary condition SSSS. 

 n 
c/L 

 
0.2 0.4 0.6 0.8 

Liu et al. [12] 

0 

3.8263 3.4038 2.9995 2.7425 

This study 3.75591 3.33145 2.96234 2.74705 

Diff. -1.84% -2.13% -1.24% 0.17% 

Liu et al. [12] 

0.2 

3.3865 3.0128 2.6548 2.4272 

This study 3.33751 2.96043 2.63244 2.4411 

Diff. -1.45% -1.74% -0.84% 0.57% 

Liu et al. [12] 

0.5 

2.9937 2.6635 2.347 2.1456 

This study 2.95251 2.61899 2.32885 2.15955 

Diff. -1.38% -1.67% -0.77% 0.65% 

Liu et al. [12] 

1 

2.6757 2.3806 2.0977 1.9177 

This study 2.63633 2.33852 2.07945 1.92828 

Diff. -1.47% -1.77% -0.87% 0.55% 

Liu et al. [12] 

2 

2.4521 2.1813 1.9222 1.7575 

This study 2.41472 2.14184 1.90453 1.76612 

Diff. -1.52% -1.81% -0.92% 0.49% 

Liu et al. [12] 

5 

2.2742 2.0227 1.7825 1.6302 

This study 2.24477 1.9909 1.77028 1.64168 

Diff. -1.29% -1.57% -0.69% 0.70% 

Liu et al. [12] 

10 

2.1372 1.9007 1.6751 1.532 

This study 2.11618 1.87682 1.66883 1.54761 

Diff. -0.98% -1.26% -0.37% 1.02% 

The numerical results here are compared with the study of Liu et al. [12]. It can be seen 

that, with the small difference as shown in Table 1, it proves the reliability of the calculation 

method and program. On that basis, we develop a calculation program based on these codes to 

study the stability of cracked FG plates lying on the elastic foundations in Section 3.2 below. 

3.2. Stability of FG plate with many cracks on elastic foundation 

In this section, the buckling coefficients of cracked FG plates with length (L), width 

0.4H m=  and thickness 4 .h mm=  The FG plate made of Aluminium (Al) and Zirconium 

dioxide (ZrO2) with Young's modulus and Poisson's ratio are the same as in section 3.1. The 
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plate is placed on the two-parameter elastic foundation (Pasternak foundation) and the crack is 

assumed to be a straight line as shown in Figure 2. The stability factor is analyzed based on 

the change of number of cracks, the length and location of the crack, the crack length (c) 

varies from 0 to 80% of the plate length. The boundary condition of the plate is full simple 

support (SSSS) when subjected to uniaxial compressive loads on opposite sides in the x-axis. 

The buckling coefficient is calculated according to the following formula (17). 

 
a) 

 
b) 

Figure 2. The cracked FG plate resting on elastic foundation: a) with 1 crack; b) with many cracks. 

Here, the corresponding unitless elastic foundation coefficients according to the formula 

(18): 

4 2

;  w s
w s

c c

k L k L
k k

D D
= = with 

3

212(1 )

c
c

E h
D =

− 
 (18) 

In case the FG plate has a crack (Fig. 2a), the crack is located in the center of the plate 

with the inclined angles investigated in the different cases 0 degrees, 30 degrees and 60 

degrees. 

Table 2. Effect of crack length and angle, power-law index on the stability coefficient of FG plate 

(L/H = 1.25; H/h = 100; w 50; 15;sk k= = SSSS). 

  Power-law index (n)  

c/H   0 0.2 0.5 1 2 5 10 

0 - 6.41372 5.85919 5.34897 4.93011 4.63669 4.41184 4.24157 

0.2 

0 

6.41331 5.85888 5.34878 4.92997 4.63663 4.41182 4.24154 

0.4 6.36892 5.81979 5.31456 4.89973 4.60915 4.38644 4.21776 

0.6 5.90742 5.57271 5.17922 4.77958 4.49958 4.2849 4.12238 

0.2 

30 

6.41371 5.85917 5.34896 4.93007 4.63666 4.4118 4.24147 

0.4 6.2136 5.82623 5.32588 4.90936 4.61755 4.39384 4.22444 

0.6 5.66392 5.33867 5.03742 4.81136 4.52797 4.3106 4.14609 

0.2 

60 

6.41318 5.85858 5.34831 4.92936 4.6359 4.41097 4.24061 

0.4 5.91875 5.51515 5.13508 4.81304 4.57915 4.40969 4.23856 

0.6 5.02269 4.69054 4.37829 4.11497 3.92511 3.77561 3.66066 
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The numerical results presented in Table 2 show that as the power-law index (n)  

increases, the metal content in the sheet increases, leading to a decrease in the stiffness of the 

plate and a corresponding decrease in the critical buckling load. As the crack length () 

increases, the stiffness of the plate decreases, which obviously causes a gradual decrease in 

the critical instability load. In addition, the increase in crack inclination significantly affects 

the buckling load, which decreases slightly when the angle of inclination is from 0 to 30 

degrees, but decreases more strongly when the angle of inclination increases from 30 to 60 

degrees. 

In the case of FG plate with many cracks, it is assumed that the cracks are parallel to the 

x axis (Fig. 2b). The plate has two cracks described as crack 2 and crack 3, they are separated 

from the center axis by a distance d. 

Table 3. Stability coefficient of FG plate with two cracks with different elastic foundation 

(L/H = 1.5; H/h = 100; n = 2; SSSS). 

  w( , )sk k   

c/H d/H (50,0) (100,0) (0,10) (0,20) (50,10) (50,20) (100,50) 

0 - 2.84527 2.90229 3.49171 4.19517 3.54873 4.25219 6.41958 

0.2 

0.1 

2.87244 2.93009 3.52123 4.22766 3.57888 4.28531 6.46208 

0.4 2.43892 2.64351 3.49659 4.20526 3.55446 4.26312 6.44651 

0.6 2.03484 2.24051 3.17465 4.06849 3.41838 4.12555 6.29634 

0.2 

0.2 

2.86005 2.91753 3.5081 4.21362 3.56558 4.2711 6.44505 

0.4 2.51989 2.7254 3.4825 4.18839 3.54012 4.246 6.42007 

0.6 2.06613 2.26907 3.07429 4.05082 3.24617 4.10769 5.93362 

0.2 

0.3 

2.84486 2.90213 3.49199 4.19638 3.54925 4.25364 6.424 

0.4 2.7136 2.87953 3.46764 4.1701 3.52497 4.22741 6.39005 

0.6 2.22383 2.42036 3.08916 3.88492 3.24859 3.99563 5.70284 

In the subsequent analysis as described in Table 3, the larger the crack length, the lower 

the critical buckling load. As the distance between the two cracks increases, i.e. the crack 

position is further away from the center, the ultimate buckling load will increase. It should be 

noted that the crack is the energy release zone inside the plate, the instability phenomenon 

when the plate has a crack in the center is much more likely to occur than in the case of a 

plate with a crack far away from the center. In particular, the elastic foundation has a great 

influence on the stability of the plate. When the elastic foundation coefficient increases, the 

stiffness of the plate increases, causing the critical buckling load to increase. We also see that 

the shear resistance coefficient (ks) has a greater influence on the unstable load than the 

Winkler foundation coefficient (kw). 

In the subsequent analysis, when gradually increasing the crack length or gradually 

decreasing the elastic foundation coefficients, it is easy to see that the critical buckling load 

decreases as shown in Table 4. However, in the experiment when changing the distance 

between the cracks (d) as shown in Figure 2b, the larger the distance between the two outer 

cracks (cracks: 2 and 3), the greater the critical load, this is only true for the panels placed on 

the Winkler foundation and c/H=0.4 or c/H=0.6. It is worth noting that when the plate is 

placed on the Pasternak foundation, the shear resistance parameter (ks) significantly reduces 

the influence of the crack location, which is also shown in Table 3. 
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Table 4. Stability coefficient of square FG plate with three cracks with  

H/h = 100; n = 1; SSSS. 

  w( , )sk k   

c/H d/H (50,0) (100,0) (0,10) (0,20) (50,10) (50,20) (100,50) 

0.3 

0.1 

2.74913 3.23683 4.28778 6.30006 4.77455 6.78358 11.0488 

0.5 2.41761 2.90124 3.92953 5.8489 4.40862 6.31772 10.7208 

0.7 2.22477 2.71391 3.64684 5.38866 4.12787 5.85361 10.1974 

0.3 

0.2 

2.7405 3.23274 4.23858 6.19999 4.72888 7.16682 11.006 

0.5 2.35269 2.84054 3.71903 5.44609 4.19885 6.37079 10.5956 

0.7 2.09293 2.58547 3.25157 4.71343 3.73427 5.64939 9.36233 

0.3 

0.3 

2.80775 3.3045 4.26696 6.17884 4.76141 6.66719 10.9639 

0.5 2.36701 2.85867 3.62202 5.22485 4.10522 5.69396 10.2343 

0.7 2.03986 2.5359 3.0481 4.38593 3.53642 4.86558 8.88809 

 

  

  

Figure 3. The cracked FG plate with many cracks on elastic foundation  

with L=H; ; H/h = 100; d/H=0.25; n = 5; SSSS. 
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 a. Plate with a crack b. Plate with 2 cracks  c. Plate with 3 cracks 

Figure 4. The first five types of instability cracked FG plate placed on elastic foundation  

L=H; w 50; 5;sk k= = ; H/h = 100; c/H=0.7; d/H=0.25; n = 3; SSSS. 
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In the next problem, the experiment is set up by keeping the volume index (n), the 

distance between the cracks (d) constant and changing both the number of cracks and the 

elastic matrix parameter as shown in Fig. 3, the impact from the number of cracks is evident 

in this section. It is clear that the plate with a crack has the greatest destabilization force. In 

particular, with the slab placed on the foundation with additional shear resistance coefficient 

ks (Pasternak foundation), the number of cracks has a great influence. 

Figure 4 presents the first five buckling types of cracked FG plates placed on an elastic 

foundation with cases of 1 crack, 2 cracks and 3 cracks parallel to the x-axis. It can be seen 

that the number of cracks has a significant influence on the shape of the buckling forms of the 

plate. 

4. CONCLUSION 

Using the theory of phase field theory and HSDT proposed by Shi [18], the paper has 

proposed a new approach to study the unstable behavior of FG plates with many traces 

internal cracks, especially plates placed on the Pasternak elastic foundations. In this paper, the 

plate is placed under compression on opposite sides along the x-axis, also known as uniaxial 

compression. The influences of the power-law index (n), the number of cracks with their 

location, the crack length, as well as the elastic background change on the critical buckling 

load were analyzed. When the power-law index (n) is increased or the crack length (c) is 

increased, the critical buckling load is reduced and the plate is prone to buckling; conversely, 

when the gap between cracks is widened, the critical load increases (provided that the plate is 

placed on the Winkler foundation). The study also shows that the elastic foundation has a very 

positive effect on the load-carrying capacity of the plate, when the Pasternak coefficient 

increases, the stiffness of the foundation increases, making the plate now have a higher 

stiffness, so the stability coefficient of the plate increases. The numerical solution of the 

buckling load obtained has high reliability and good agreement with the reference calculation 

results for thin plates with internal cracks. Last but not least, the present numerical study 

opens up new possibilities for further investigation of other problems such as the problem of 

nonlinear buckling in the plate when simultaneously applied loads such as thermal and 

mechanical load, or the problem of instability as the crack grows. 
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