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Abstract. In recent times, the phase field method is a robust simulation tool that can predict 

crack formation and propagation in structures. In brittle and quasi-brittle materials, the strain 

tensor is decomposed into negative and positive parts corresponding to the compression and 

tension behaviors when the structure is loaded. In the previous studies related to the phase 

field method, the strain tensor decompositions do not satisfy the orthogonal condition of these 

two parts, even if the elastic stiffness tensor is isotropic. This problem leads to inaccuracies in 

the mechanical behavior of the materials. In this paper, the strain tensor orthogonal condition 

is applied to the bulk strain tensor parts representing the internal strain of the component 

phases. This orthogonal condition is implemented into the phase field method with interfacial 

damage to simulate crack propagation in a sample containing multi-phase heterogeneous 

materials. Furthermore, the shape and area fraction of these phases are recognized by a 

supplemental sub-function which was studied in our recent paper from image formats. 

Through several examples, the obtained results are compared with the relevant numerical ones 

to demonstrate the correctness and effectiveness of the proposed method.  

Keywords: phase field method, strain orthogonal decomposition, damage, supplemental sub-

function, multi-phase heterogeneous structure. 
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1. INTRODUCTION 

Nowadays, the accurate prediction of crack initiation and propagation and the load-

displacement relationship in the structures by simulation method is a major challenge. Recently, 

the phase field method has become an effective tool to solve the above problems. In a work [1], 

this simulation method was used to predict the fracture in the homogeneous, isotropic materials. 

Then, studies [2, 3] investigated the impact of pores distribution on the initiation and propagation 

of cracks by this numerical method. This simulation method was then used to describe the crack 

evolution in structures containing anisotropic materials [4, 5] by using multiple phase field 

variables and an orientation tensor to represent the preferred directions of cracks that may occur 

in this structure. 

In the recent work [6], we used the phase field modeling to simulate the crack path in high-

strength concrete beams containing nano-silica. In another study [7], to determine the shape and 

area fraction of the matrix and inclusion phases in the heterogeneous sample, we have created a 

supplemental sub-function which is written in the Matlab programming language [8]. Then, we 

used the phase field method with the interfacial damage [9] to simulate the fracture in the 

interaction between the interfacial damage and bulk damage in the above heterogeneous material. 

The analytical study of [10] is based on a strain transformation preserving the elastic energy 

to decompose the strain tensor into compression and tension parts with satisfying the orthogonal 

condition. In the recent development of the phase field method for modeling the fracture of brittle 

and quasi-brittle materials, several models of strain decomposition into a positive part and a 

negative part have been used or proposed (see [1, 11-13]). Most of them do not verify the 

orthogonality condition even when the elastic stiffness tensor is isotropic. This can lead to the 

appearance of the singularity points on the behavior curve and the spurious effect in the structure 

when the crack initiates. 

Therefore, in this study, we analyze and apply the condition of the strain orthogonal 

decomposition [10] to the bulk strain tensor part of the interior of component phases. We consider 

the strain decomposition [1] used in [9] (denoted by Model 1 (M1)) and the strain decomposition 

scheme which satisfy the strain orthogonal decomposition condition in the sense of an inner 

product where the elastic stiffness tensor acts as a metric [10] (denoted by Model 2 (M2)). 

Furthermore, the samples in this paper contain 2 or 3 component phases. The shape and area 

fraction of these phases are recognized by a supplemental sub-function [7] from the *.jpg image 

formats. This problem creates the basis for simulating microcracking systems in realistic structures 

containing many complex material phases like concrete. 

The paper is organized as follows: Section 2 presents the strain orthogonal decompositions 

which are applied in the phase field method with the interfacial damage. In Section 3, several 

numerical examples are shown to demonstrate the capabilities of the improved phase 

field method.  Finally, conclusions and perspectives are drawn in Section 4. 

2. PHASE FIELD MODELLING WITH THE STRAIN TENSOR DECOMPOSITIONS 

An open domain of a cracked heterogeneous solid Ω is presented.   is the boundary of 

domain Ω (see Figure 1a). Let ΓI  and Γ be an interface between the different phases and the crack 

surfaces, respectively. In this work, a scalar parameter d(x) represents the geometry of the 

propagating crack (with d = 1 denoting the fully broken material, and d = 0 indicating the initial 
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state of the material) as depicted in Figure 1c. A fixed scalar variable β(x) is shown as the geometry 

of interfaces between different phases (see Figure 1b). In this work,  l and lβ  are the regularization 

lengths describing the actual widths of the smeared cracks and the material interfaces, respectively. 

In the following, l = lβ  is adopted for the purpose of simplicity. 

 

 

Figure 1. Regularized representation of a crack and an interface: (a) a cracked solid containing the phases, 

(b) a fixed scalar variable β(x) the interface; (c) a scalar variable d(x) of the crack. 

2.1. Energy equations in the phase field method 

In the phase field method with the interfacial damage, total energy in the cracked solid is 

described by three energy parts as follows: 

( , , ) ( , ) (1 ) ( , ) ( , ) ( , )e I

u e cE d W d d g d d d d      
  

= + −  +     u w  (1) 

where 
2

( , )
2 2

d l
d d d d

l
  = +    and 

2

( , )
2 2

l

l



     = +    are the crack surface 

density functions on Γ and ΓI, respectively,  gc is the fracture toughness, I  is a strain density 

function depending on the displacement jump across the interface 
I , = h. ( ). Iw u x n  is the 

displacement jump at 
I , h is the element mesh size, nI is the normal vector to 

I . 

Two phase field variables d(x) and β(x) are determined in the Euler–Lagrange equation 

associated with the variational problem as:  

   ( ) inf ( ) ; where ( ) 1 ; and ( ) ( )
d

d d d d
d S

d Arg d S d d d d d




=  = =   = x x  
 (2) 

and 

   ( ) inf ( ) ; where ( ) 1 ; and ( ) ( )I

d S
Arg S d


         




=  = =   = x x  
 (3) 

In the phase field taking into about interfacial damage, the strain tensor   is splitted 

into two parts related to the bulk e and the displacement jump at the interface 
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in  as 
e in+ =   , in which e is decomposed into the positive part e

+  and the negative part e

−  

representing the tension and compression parts when the structure is loaded:  

e e e
+ −+ =           (4) 

In the work of [9], the different strain density function e

uW
 
is defined as follows: 

( , ) ( ){ ( ) } ( )e

u e e e eW d g d k+ + − −=  + +u     (5) 

where ( ) ( )
2

1g d d= −
 
is the damage degradation function, k<<1 is a small parameter to 

ensure the well-posedness of the system in a fully broken solid. 

2.2. Introduction of two split operators of the strain tensor 

In this section, we present two cases of the tensor decomposition corresponding to two models 

used in this study: 

Model 1: Tension and compression decomposition of the strain proposed by [1]. Then, the 

strain decomposition is used in the phase field method [9].  Here, the tension and compression 

elastic strain energy parts ( )e e

+  and ( )e e

−   are defined as: 

( )
2

2( ) ( ) {( )}
2

e e e eTr Tr


 


 = +    

 (6) 

From equations (5) and (6), the Cauchy’s stress can be analyzed as:  

  ( ) 2 2
e

u
e e e e e

e

W
g d k Tr Tr   + −

+ −


= + + + +


1 1   


 =  

    (7) 

where ( ) / 2


• = • • ,   and   are Lamé’s coefficients of the material, and  1;1;0
T

1 = . 

Model 2: A strain orthogonal decomposition is presented in [10] which is applied to the strain 

e . This orthogonal condition is implemented within the phase field method with interfacial 

damage.  In this case, two strain energy density functions can be obtained:  

( )
1 1

( ) : : :
2 2

e e e e e e

     = =      
 (8) 

where 1/2 :e e

 =   with e e e

+ −= +    and : 0e e

+ − =   for ensuring the orthogonal condition 

of strain decomposition, with  is the elastic stiffness tensor. This condition ensures the accuracy 

of the mechanical behavior in the brittle/quasi-brittle (see [10]). And it is the first time, the 

condition has been implemented in the phase field method with the interfacial damage.  

Here, two parts e

  are analyzed as: 

1

D
i

e e i i

i



= 

=  n n  
 (9) 
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where i

e  and in  with i=1,…, D are the ordered eigenvalues and eigenvectors of e

 .  

From equations (5) and (8), the Cauchy’s stress is written as: 

 ( ) ( ) ( ) ( ) 1/2 1/2 1/2 1/2: : : : : : :( ) e e e e e

e
u

e

e

W
g d k

+ + − −

+


= +





 =  
 (10) 

From equation (10), e



 are two projectors defined as e
e

e


 
=





. 

2.3. The phase field and mechanical problems 

In [9],  the phase field variable d(x) is determined by solving the weak form equation: 

2 (1 ) (1 ) . ( ) 2e ec
c

g
d d g l d d d dd

l
    

 

  
+ − + −    =   

  
 H H  

(11) 

where the strain history function 
eH  is shown as: 

 
( ) 

0,
max ,e

e
t

+


=  xH  (12) 

By solving the following weak form equation, we can find the displacement variable u (see 

[9, 14]):  

( ): ( ) ( , ) 0

F

e e d d d d      
   

+  −  −   =   u t w w f u F u   (13) 

where f and F  are body forces and prescribed traction over the boundary 
F , 

( ). Ih = w u n . And 
( )

( )
I

=


w
t w

w
 is the traction stress at the interface. Then, we set 

 ( ) (w ), (w ) T

n n t tt t=t w  with tn and tt are the normal and tangential parts. Here, we determine

w w
( ) expI I n n

n c

n n

t g
 

   
=  = −   

   
t w n  and tt=0 (see [15]), with w . I

n = w n
 
is the normal part of the 

displacement jump w, I

cg  is the fracture toughness at the interface ( I

cg  is defined as the total area 

under the traction-opening curve), 
ut  is the critical fracture strength at 

I  and 
exp(1)

I

c
n

u

g

t
 =  is 

the displacement jump value when 
n ut t=  (see [9]). 

3. NUMERICAL EXAMPLES  

3.1. Traction test of a sample containing two phases 
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In this example, the phase field method with the interfacial [9] was used to simulate the crack 

evolution in the traction test of a sample containing two phases. The dimensions of the domain are 

1x1 mm as Figure 2d. The shape and area fraction of the phases are determined by the supplemental 

sub-function [7] from *.jpg image format as Figure 2a. In Figure 2d, the inclusion and matrix 

phases are represented in black and white, respectively. After analyzing by the supplemental sub-

function, this sample is meshed into 62500 uniformly square-shaped bilinear elements and the 

mesh size is h=0.004mm as shown in Figure 2b (see [7]). Figure 2c presents the interface between 

the phases which is depicted in red. The lower end is fixed in the vertical direction while the 

horizontal direction is free. The bottom left corner node is fixed in the two directions. On the upper 

side, the horizontal displacement is free and the vertical displacement is prescribed with a constant 

incremental displacement ∆u = 5x10-4mm during the simulation process. In this case, we can use 

a plane strain assumption. 

 

  (a) (b) 

 
 

 

 
(c) (d) 

Figure 2. Traction test of a sample containing 8 inclusion particles: (a) image of *.jpg format, (b) a 

number of elements after processing by supplemental sub-function [7], (c) interface of matrix-inclusion 

phases, (d) boundary conditions and the dimensions of the sample.  
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The material parameters of each phase are the same in [11]: GPa30i = , 20 GPai = ,  

6 GPam = and 4 GPam = , where the indices i and m correspond to the matrix and inclusion, 

respectively, the fracture toughness I

c cg g= =0.0001kN/mm,  0.01GPaut =  and the regularization 

length  l=2h=0.008mm.  

The purpose of this numerical example is to simulate the fracture of the sample containing 8 

complex inclusions by using the model M1 [9] and the present model M2 (see Section 2.2). Then, 

we compare the results between these models in order to show the advantages of the proposed 

model M2.  

Figures 3a through 3c show the crack initiation and propagation in the sample by using model 

M1, in which the yellow paths represent the crack. Figures 3d-3f present the crack path with the 

proposed model M2. We can see that the crack initiates at the interface between the phases, then 

it propagates into the matrix phase until the fully broken in the sample. The complex crack system 

is developed in the interaction between the interfacial damage and the bulk damage in the interior 

of the matrix phase. It can be seen that cracks are initiated at the interface where fracture resistance 

seems to be weaker than in other zones. Then, these cracks propagate independently in the matrix 

phase to a sufficiently large length and connect into a complex crack system. The crack 

propagation process at the early stage of the two models is similar, but there is a slight difference 

in some locations when the individual cracks are connected at the end-stage as shown in Figure 3c 

and Figure 3f. 

 

  
 

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3. The crack evolution in the samples with two models: model M1 (a) 0.01mm, (b) 

0.0155mm, (c) 0.0275mm; model M2 (d) 0.01mm, (e) 0.0155mm, (f) 0.0275mm. 
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Figure 4. Comparison of load-displacement curves obtained by two models. 

 

Figure 4 shows a comparison of the load-displacement curves between the models. We can 

see that the behavior curves of the two models are the same before the displacement value of 

0.022mm. Then, the behavior curve of M1 has a folded shape, while the behavior one of M2 is 

very smooth. This can be explained that when using model M2 with strain orthogonal 

decomposition (9), it is possible to eliminate the singularity points on the behavior curve and the 

spurious effect in the structure when is close to complete damage. The positive results create the 

basis for simulating the fracture in the sample containing three phases as matrix, inclusion and 

pore phases of the next examples. It can be noted that the shape and area fraction of these phases 

are recognized by a supplemental sub-function [7] from the *.jpg image formats in all the 

examples. 

3.2. Traction test of a sample containing three phases 

An image of *.jpg format as Figure 5a is recognized

 

by a supplemental sub-function [7]. Then, 

we have a sample containing three phases as Figure 5b: inclusion, matrix and pore representing 

black, grey and white, respectively. This sample is also meshed into 62500 uniformly square-

shaped bilinear elements with the mesh size h=0.004mm. 

The boundary and loading conditions are the same in the previous example. A constant 

incremental vertical displacement ∆u = 5x10-4mm is prescribed at the upper side of the sample as 

Figure 5d. The interface between inclusion- matrix phases is red with the interfacial parameters 

concerned: the fracture toughness gc
I=gc=0.0001kN/mm and tu=0.01GPa. 

Here, we used the material properties of inclusion and matrix phase as: GPa30i = , 

20 GPai =
 
and 6 GPam = , 4 GPam = . We can choose the very compliant properties for the 

pore as 
6

10 GPap
−

= , 0 GPap = . The regularization length parameter is chosen as 

l=2h=0.008mm. A plane strain assumption is adopted. 
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 (a) (b) 

 
 

 

 
(c) (d) 

Figure 5. Traction test of a sample containing three phases of the inclusion (black), matrix (white) 

and pore (grey): (a) image of *.jpg format, (b) a number of elements after processing by supplemental 

sub-function [7], (c) interface of matrix-inclusion phases, (d) boundary conditions and the dimensions of 

the sample. 

In this example, we consider the role of the supplemental sub-function [7] to identify samples 

containing multiple phases as well as consider the influence of the pore phase on crack evolution 

and load-displacement behavior in the sample. Moreover, we compare the results obtained from 

the two aforementioned models. Then, the role of strain orthogonal decomposition (9) can be 

evaluated and discussed. 

Figure 6 shows the crack initiation and propagation by using M1 of [9] and M2 with the 

orthogonal condition. It can be seen that the crack initiates at the interface between the matrix and 

the inclusions, then it propagates into the matrix and passes through the pore phase leading to the 

damage of the sample. In all two models, the crack paths are very complex and show the potential 

of the numerical method to describe microcracking in the interaction between the interfacial 

damage and the bulk damage in the multi-phase heterogeneous sample in this example. In general, 

the crack paths in the two models are almost similar from crack nucleation to complete damage of 

the sample. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. The crack evolution in the samples with two models: model M1 (a) 0.0115mm,  

(b) 0.015mm, (c) 0.025mm; model M2 (d) 0.0115mm, (e) 0.015mm, (f) 0.025mm. 

 
Figure 7. Comparison of load-displacement curves obtained by two models. 

The comparison between the load-displacement curves of the two models is depicted in Figure 

7. The crack starts to nucleate at the displacement value of 0.0115mm, the material resistance 

rapidly decreased (see Figure 7). Furthermore, there is a slight difference when the crack begins 

to spread to the matrix phase when the displacement value is larger than 0.0115mm. 

Because there are no experimental results, it is difficult to evaluate the error of the two models 

at these displacement values, thus we consider the smoothness of the behavior curves during the 

simulation process to evaluate the advantages of the two models. From Figure 7, the displacement 

value is larger than 0.025mm, the behavior curve of M1 has a folded shape, while the behavior 

one of M2 is very smooth. It can be noted that when comparing the load-displacement relationships 
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of the sample containing pores in this example with the non-pore sample in the previous example, 

the peak load of the sample with pores is significantly reduced (see Figure 4 and Figure 7). 

3.3. Three-point bending test in the beam containing three phases. 

The dimensions of the beam are 3x1mm and the length of the pre-existing crack is 0.25mm. 

The middle zone of the beam contains the inclusion, matrix and pore phases whose shape and area 

fractions are the same as the sample in example 3.2. The left and right zones of the beam are used 

homogenous material corresponding to the matrix phase. After processing by the supplemental 

sub-function [7], the inclusion, matrix and pore phases are black, grey and white, respectively as 

shown in Figure 8a. The domain is meshed into 187500 square-shaped bilinear elements. The mesh 

size is h=0.004mm. We choose l=2h=0.008mm. The interface between inclusion- matrix phases is 

red as Figure 8b. The boundary conditions are depicted in Figure 8c: at the center of the beam on 

the top side, the displacement is prescribed with monotonic displacement increments of ∆u = -

0.0025 mm, the left bottom corner node is fixed in two directions, while the vertical displacement 

of the right bottom corner node is fixed, and 

the horizontal displacement is free. A plane strain condition is adopted in the example. 

 

 
  

 
(a) (b) (c) 

Figure 8. Three-point bending test in the beam containing three phases: (a) a number of elements after 

processing by supplemental sub-function [7] with the inclusion (black), matrix (grey) and pore (white), (b) 

interface of matrix-inclusion phases, (c) boundary conditions and the dimensions of the sample. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. The crack evolution in the samples with two models: model M1 (a) -0.022mm, (b) -0.055mm, 

(c) -0.095mm; model M2 (d) -0.022mm, (e) -0.055mm, (f) -0.095mm. 

 

This example aims to compare the crack path and the load-displacement responses of the 

three-point bending test in the beam containing three above phases by using two mentioned 

models. The crack evaluations in the beam with M1 and M2 are shown in Figure 9. We see that 

the crack is initiated from the pre-existing crack and propagated vertically. When the crack comes 
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into contact with the first inclusion particle, the crack begins to branch and spread to the matrix 

phase, then it looks for the location of the neighboring pores where the material properties are 

weakly reduced. The crack system is complicated with many branches because it is blocked by the 

inclusion particles with their strong material properties. 

 

 
Figure 10. Comparison of load-displacement curves obtained by two models. 

The load-displacement behaviors of the two models are compared in Figure 10. It can be seen 

that the behavior curve of M2 is smoother than that of M1 when the displacement value is larger 

than 0.08mm. This can be explained that the simulation of M1 causes a spurious effect on the 

sample. This problem presents a rough behavior curve shape, especially when the structure is 

nearly fully broken. 

4. CONCLUSION AND PERSPECTIVES  

This paper presents model M2 with strain orthogonal decompositions proposed by [10] 

applied to the bulk strain part of the strain tensor. The results obtained are compared with the 

model M1 of  [9] with the strain decomposition [1]. It turns out from these comparisons that there 

are good agreements in all the examples: traction test of a sample containing two or/and three 

phases and three-point bending test in the beam containing three phases. The advantages of the 

present model are to: (i) satisfy the strain tensor orthogonal condition; (ii) can be simple 

applied into phase field modeling combined by explicit forms of projection operators; (iii) 

eliminate the singularity points on the behavior curve and the spurious effect in the structure in the 

damage process to improve the accuracy of material behaviors. 

We can see that the crack is initiated at the interface of matrix-inclusion phases, then it 

propagates into the matrix phase and begins to branch when it encounters neighboring pores until 

the sample is completely damaged. The obtained results show the promising potential of the phase 
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field method combined with strain orthogonal decompositions to predict the complex microcrack 

systems in the interaction between the interfacial damage and the bulk damage in heterogeneous 

multi-phase samples. 

Furthermore, in all the examples, the shape and area fraction of the component phases are 

determined by supplemental sub-function which was done in our previous study [7]. Thus, the 

upcoming studies will simulate the behavior of a concrete material containing complex multi-

phase whose images are obtained by an X-ray microtomography technique. This is a modern 

experimental technique that is being very widely used in the world to determine the microstructure 

shape of component phases in the realistic structure. 
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