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Abstract. The phase-field method has become a robust tool to describe the complex crack 

nucleation and propagation in heterogeneous materials. In these materials, an interaction 

between bulk brittle damage and interfacial damage through the splitting the strain tensor 

into a bulk strain part and a jump strain part at the interfaces. Moreover, the material 

response of the heterogeneous materials in tension and compression, the bulk strain part 

needs to be decomposed into a positive part and a negative part. However, most of the 

previous works, these decompositions do not verify the negative part be orthogonal the 

positive part, which lead to the inaccuracy in the material mechanical behavior. To solve the 

shortcomings, the strain orthogonal decompositions problem that is applied to decompose 

the bulk strain in our work. In the present work, author combined the phase-field modeling 

taking into account interfacial damage with the problem of the bulk strain orthogonal 

decompositions by two proposed solutions. The successful prediction of the crack 

propagation for the inclusion-matrix structures and the multi-phases materials of X-ray 

computed tomography (XR-CT) images by two proposed solutions will be demonstrated in 

several numerical examples. 

Keywords: phase field method, X-ray computed tomography, strain decompositions, 

interfacial damage. 
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1. INTRODUCTION 

One of the main objectives of fracture mechanics is to predict the crack nucleation and 

propagation of materials. Many previous works have been done in both experimental and 

numerical approaches to reach this goal. Griffith [1] and Irwin [2] have placed an important 

milestone in the problem of predicting the crack nucleation by developing the Linear Elastic 

Fracture Mechanic (LEFM) theory in which the stress field is calculated using the theory of 

elasticity. From the stress field obtained, the stress intensity factor (SIF) is defined and the crack 

will grow when this stress intensity factor exceeds the material fracture toughness. Based on this 

theory, Francfort and Marigo [3] and Bourdin et al. [4] proposed the variational approach to 

fracture relative to a global minimization of the total energy allowing to numerically solve the 

problem determining the crack nucleation and propagation for complex structures. Then, Pham et 

al. [5] used the variational framework for brittle fracture with the principles of irreversibility, 

stability and energy balance into the phase field method to solve a homogeneous one-

dimensional bar. Next, the authors of the works [6, 7] proposed a regularized description of 

discontinuities to replace the surface of the crack to improve the phase field modeling. 

In multi-phase materials, in order to model the spread of complex cracks, especially in the 

interfacial zone between two phases, many previous studies have been given the Cohesive Zone 

Model (CZM) concept which was proposed in first by Barenblatt [8] and Dugdale [9]. Then, in 

the works [10], the CZM have been applied into Finite Element Method (FEM) to handle the 

fracture at the crack tip in brittle and ductile materials. In the CZM framework, one of the 

softening curves describing the relation between the traction and displacement jump across the 

cohesive surface as linear, exponential, hyperbolic and Cornelissen’s curves can be used to 

determine the separation state of the cohesive surface.  

In order to simulate a network of the complex cracks as well as the interface between the 

matrix and inclusion phases, we need to smooth the mesh size to determine accuracy the 

direction of the normal vectors at the nodes of elements. Several methods can find and refine the 

mesh size at the interfacial zone while the remaining zone can place the coarser meshes by 

additional functions such as viewpoint method presented in [11] and Extended Isogeometric 

Analysis (XIGA) in [12].  

In the materials which have the highly complex microstructures and the random distribution 

of the multi-phases, the problem of determining the interfaces between the phases is necessary to 

identify the shape of the phase components. An experimental method based on the pixel-image 

as XR-CT is widely applied to solve this problem (see, e.g, [13, 14, 15, 16]). The phase-field 

modeling proposed by [17] to predict the crack propagation in realistic microstructures obtained 

by XR-CT gave the very reliable results. In this paper, the component phases of the realistic 

microstructure obtained by XR-CT are recognized by a supplemental sub-function [18] from the 

*.jpg image formats. 

A recent theoretical study of He and Shao [19] proposed the strain decomposition into a 

negative and positive parts which are orthogonal in the sense of an inner product where the 

elastic stiffness tensor acts as a metric tensor. These strain orthogonal decompositions described 

accuracy in mechanical behaviors of materials. In this work, we used the strain decomposition 

proposed in [19] associated with the work [17] to improve accuracy in terms of mechanical 

behaviors in the multi-phase materials. The principal advantages of this method are: (a) the 

orthogonality condition is applied to the bulk strain decomposition; (b) multiple complex crack 
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nucleation and propagation of the realistic materials obtained by XR-CT can be solved in the 

interaction between the bulk crack and interfacial one; (c) two solutions based on orthogonality 

condition are applied for the phase field method (denoted by Solution 1 and Solution 2). 

The overview of the paper is as follows: Section 2 gives the detailed phase-field framework 

taking into account the interfacial damage associated with the strain orthogonal decompositions. 

In Section 3, several numerical examples using two solutions are presented. Finally, conclusions 

and perspectives are drawn in Section 4. 

2. PHASE FIELD METHOD OF BULK DAMAGE AND INTERFACIAL DAMAGE 

WITH THE STRAIN ORTHOGONAL DECOMPOSITIONS 

2.1.  Regularized form of the energy in the phase field method 

In this simulation method, the general form of the energy in the cracked structure is 

described by: 

( , , ) ( , , )   


 =   du u  (1) 

in which: 

  ( )int( , , ) ( , ) 1 ( , ) , ( , )           =  + −  + e

u e cGu u  (2) 

where, the strain tensor ( ), ,

1
( )

2
= +=s

ij i j j iu uu  is decomposed into two parts related to 

the bulk e  and the displacement jump at the interface , respectively: 

( ) ( ) ( )( ) ( ) + ( )eu x u x u x=    (3) 

And ( , )e

u e is the strain density function, which relates to the tension and compression 

elastic strain energy parts + e  
and − e

: 

( , ) ( ){ ( ) } ( )  + + − −  = + +e

u e e e e eg    (4) 

We used the widely degradation function ( )
2

1 = −g( ) , with 1  is a small parameter 

to ensure the well-posedness of the system in a broken solid. Here, the phase field variables 

( ) x and ( ) x ) describing the damage of the solid and the interface, respectively: 

( )   ( ) inf ( ) , | ( ) 1 on ,
     =  = =   ,t Argx x x  (5) 

( )   int int( ) inf ( ) , | ( ) 1 on ,
     =  = =   ,t Argx x x

 
(6) 

In the equations (5) and (6), 
int  and Γ be an interface between the different phases and the 

crack surfaces, respectively, u(x) is the displacement variable, int  is a strain density function 

depending on the displacement jump across the interface; u  is the displacement jump at the 
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interface; cG  is the fracture resistance. The same regularization 

length    = =   is adopted for the interfacial crack and the bulk crack for the sake of 

simplicity, thus 
2

( , )
2 2

 
    


 = +    and 

2

( , )
2 2



 
    


 = +    are the crack 

surface density functions which depend on ( ) x and ( ). x   

In this work, the bulk strain e  is decomposed into the tension part 
+

e and the compression 

part 
−

e as follows: 

+ −+e e e=    (7) 

Base on the principle of maximum dissipation and energy minimization of [3] and the 

boundary conditions of the variables ( ) x , ( ) x  and u(x) in [17], we solve two systems of 

equations to determine the variables ( ) x and u(x), respectively: 
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In (9), 
( , )

=


e

u e
e

e





is the Cauchy stress tensor, f are body forces and u  and F  are 

prescribed displacements and forces on the corresponding boundaries u
and F

, 

respectively. And 

int ( )
( )


=



u
t u

u
 is the traction stress at the interface. Then, we set 

 ( ) ,= T

n tt tt u  with tn and tt are the normal and tangential parts (see [17]). In (9), (10), 

( ) ( ) ( ). , and •  •  • are gradient, divergence and laplace of ( );•  
I

n  and n  are the normal 

vectors to 
int  and the external boundary of the domain ,  respectively. 

The equation  (81) associated weak form is determined as: 

2 (1 ) (1 ) . ( ) 2      


 

  
+ − + −    =   

  
 

e ec
c

G
G d d  

 

(10) 



 

Transport and Communications Science Journal, Vol.74, Issue 1 (01/2023), 20-34 

 

24 

 

where, the strain history function e  is defined as: 

 
( ) 

0,
max ,


+


= e

e
t

x  (11) 

2.2.  Strain orthogonal decompositions implemented into phase field method 

The strain orthogonal decomposition is presented in [19] which is applied to the bulk strain 

e . This orthogonal condition is implemented within the phase field method with interfacial 

damage [17]. Let  be the fourth-order stiffness tensor, two elastic strain energy parts + e
and 

− e
are expressed by: 

( )
1 1

( ) : : :
2 2

     = =e e e e e e      
 (12) 

where, 1/2 : =e e 
 
and the tension and compression parts  

+

e  and 
−

e  must be satisfied 

the following conditions: 

and : 0+ − + −= + =e e e e e       (13) 

We have solution 1 and solution 2 which satisfy the orthogonality condition (13) as follows: 

Solution 1: two parts 

e  are analyzed as: 

( ) ( )
1 1

Tr ; and Tr+ −

+ −

= + =dev

e e e e e1 1      
 (14) 

Where, 1 denotes the - dimensional identity tensor ( 2, 3=  in the cases 2D and 3D, 

respectively), ( ) / 2

= x x x and the deviatoric strain tensor is ( )

1
Tr= −dev

e e e 1   . 

The positive and negative strain energy density functions  + e
and can be obtained: 

( ) ( )
1 1 1 1

( ) : Tr : Tr
2 2

+ + + +

+ +

   
 = = + +   

   

dev dev

e e e e e e e e1 1        (15) 

and 

( ) ( )
1 1 1 1

( ) : Tr : Tr
2 2

− − − −

− −

   
 = =    

   
e e e e e e1 1      (16) 

The Cauchy stress is defined as: 

( ) ( ) 
( ) ( )

( ) ( ) : : : :   
+ + − −

+ + − − 
= + + = + + 

 

e e e e
e e e e e e

e e
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In the equations (15), (16) and (17),    
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( ) ( )Tr Tr



=e e er   with ( )  1
sign Tr 1 .

2

 =  +e er 
 
 

Solution 2: two parts 

e  are defined as: 

1




=

=  i

e e i i

i

n n  
 (18) 

Where,  i

e  and in  with 1,...,=i are the ordered eigenvalues and eigenvectors of 


e .  

Two parts of the strain energy density function in the second case are concerned: 

( ) ( )1/2 1/21 1
( ) : :

2 2

      = =e e e e e e      
 

(19) 

In this solution, the Cauchy stress is written as: 

( )

( )( ) ( ) ( ) ( ) 1/2 1/2 1/2 1/2

( ) ( )
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( ) : : : : : :

 

 

+ + − −
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e e e e
e

e e

e e e e e

g
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(20) 

From equation (20), 


e  are two projectors defined as 


 
=


e
e

e




. 

 We solve the systems of equations (8) and (9) by a finite element method in a staggered 

scheme with the load increments [17].  

3. NUMERICAL EXAMPLES  

3.1. Symmetric three-point bending test 

This example aims to study the crack propagation within a beam during a three-point 

bending test. Furthermore, two solutions of strain decompositions (14) and (18) are investigated 

in this study. The beam under consideration in this study is assumed to have the same 

dimensions as the one used in [17] and [20]. The geometry of the structure and the loading 

conditions are depicted in Fig.1. The domain has an initial cohesive interface to validate the 

cohesive model. The dimensions of the beam are 10x3mm. The domain occupied by the beam is 

uniformly meshed into 200x60 quadrilateral elements. The boundary conditions are as follows: 

the left bottom corner is fixed in two directions, while the right bottom corner the vertical 

displacement is fixed, and the horizontal displacement is free. The displacement is prescribed at 

the center on the upper end of the beam with monotonic increments of the displacement 

u = -0.005 mm for 170 load increments.  

The material properties of the beam are chosen as 100MPa=E , 0.3 = , the fracture 

toughness in the phases and the interface 0.1= =I

c cG G N/mm, the fracture strength at the 

interface 
int  is set as 1=ut MPa (see [17]). The regularization parameter   is chosen as   = 

0.15mm. The plane strain assumption is adopted in our simulation. 
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Figure 1. Symmetric three-point bending test: geometry and boundary conditions. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. The crack evolution in the symmetric three-point bending test: solution 1 (a) 0.25 mm, 

(b) 0.35 mm; solution 2 (c) 0.25 mm, (d) 0.35 mm; Nguyen et al. [17] (e) 0.25 mm, (f) 0.35 mm. 
 

 

By applying two solutions of strain decompositions (14) and (18), the evolutions of the crack 

are shown in Fig. 2(a-b) and Fig. 2(c-d) with different values of the prescribed displacement at 

the center on the upper end of the beam. These crack evolutions obtained in the work [17] are 

also presented in Fig. 2(e-f). The comparison of the load-displacement curves between two 

solutions of strain decompositions (14) and (18) with the results derived in [17, 20] is shown in 

Fig. 3. From the comparison of both the evolution of the crack and the mechanical behavior in 

Fig. 2 and Fig. 3, we can see that the present method with two proposed strain decompositions 

(14) and (18) are practically efficient and accurate to simulate the crack propagation with the 

influence the interfacial damage. 
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Figure 3. Symmetric three-point bending test: comparison of the load-displacement curves between [17],  

[20] with two solutions of strain orthogonal decompositions (14) and (18). 

3.2. Tension test of a plate containing randomly distributed inclusions 

This example aims to simulate the development of the interfacial damage situated between 

the randomly distributed inclusions and matrix phases. For this purpose, we use a plate 

containing 9 randomly distributed circular inclusions whose volume fraction is equal to 0.07. The 

dimensions of the plate are 1x1mm. On the lower end, the vertical displacements are fixed, while 

the horizontal displacements are free and the left bottom node is fixed. On the upper end, the 

vertical displacements are prescribed in such a way that their values increase monotonically with 

u = 0.00005 mm during 200 load increments (see Fig. 4). The material properties of the 

inclusion and matrix phases are chosen, respectively: 52 GPa=iE , 0.3 =i
, 10.4 GPa=mE , 

0.3, =i 0.01GPa.=ut  The toughnesses of both phases and the interface are taken as 

0.27 N / mm.= =I

c cG G  
The plane strain assumption is considered. 

 

Figure 4. Traction test of a microstructure containing randomly distributed inclusions: geometry 

and boundary conditions. 
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(a) 

 
(b) 

 
(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(k) 
 

(m) 

 

(n) 

Figure 5. Crack evolution for several representation realizations of the microstructures containing 

randomly distributed inclusions: (a), (d), (g)  and (k) Solution 1; (b), (e), (h)  and (m) Solution 2; (c), (f), 

(i)  and (n) Nguyen et al. [17]. 

The structure is discretized into 300x300 quadrilateral elements. The regularization 

parameter is chosen as 0.0075 mm. =  In this example, we simulate the crack evolution of 15 

realizations of this plate containing 9 randomly distributed inclusions. The microcracking 
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propagations of several representation realizations are shown in Fig. 5.  It can be seen that, the 

evolutions of the crack are very various: when the inclusions in contact with each other, the 

crack path is intiated between the inclusions where mechanical behavior seems to be the 

weakest, in the contrast when the inclusions are not in contact, the crack path can be created at 

the interface between the matrix and the inclusions, and then propagate into the matrix until the 

fully damage. We can see that when using the two proposed solutions, the main cracks are the 

continuous lines without dividing into two crack ends as [17]. This phenomenon is completely 

natural in brittle materials in tension. This can be explained that with two present solutions, they 

are possible to eliminate the singularity points on the behavior curve and the spurious effect in 

the structure when is close to complete damage. This will improve the precision in the 

mechanical behavior of these materials. 

 

(a) 

 

(b) 

 

(c) 

Figure 6. Comparison of the load-displacement curves (the red curve and dash line denote the average 

response [17] and the present average response, respectively): (a) behavior curves for 15 realizations with 

solution 1; (b) behavior curves for 15 realizations with solution 2; (c) behavior curves for 15 realizations 

with Nguyen et al. [17]. 
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The load-displacement curves of two proposed solutions and [17] are plotted in Fig. 6a-c for 

15 realizations. The average responses of [17] and the present solutions for 15 realizations are 

shown in the red line and the dash line, respectively. From the obtained results of both the crack 

propagation and the mechanical behaviors in the simulation for 15 realizations, two present 

solutions of strain orthogonal decompositions can provide a promising tool to investigate the 

damage of more complex structures. 

3.3. Tension test of a realistic microstructure obtained by XR-CT images 

In this example, we use two proposed strain decompositions (14) and (18), to predict the 

microcrack propagation with both interfacial damage and bulk damage of a realistic 

microstructure obtained by XR-CT image. We consider a 2D microstructure of dimensions 

37.2x37.2mm. By using the XR-CT image of a real cementitious material provided in [16], the 

geometry of this structure is described in Fig. 7a. The realistic material consists three phases: 

mortar (grey), gravel aggregates (black) and pore (white). The loading conditions in the 

horizontal and vertical directions are illustrated in Fig. 7b and Fig. 7c, respectively. The *.jpg file 

of Fig. 7a is recognized by a supplemental sub-function [18], we have the shapes of three phases 

after the processing: mortar (blue), gravel aggregates (black) and pore (white) which are 

presented in Fig. 8a. Then, a numerical technique of a level-set function [17] is used to determine 

the complex interface of the aggregates and mortar (see Fig. 8b). The objective of the interface 

determination is to handle the value of varible ( ) x  from Eq. (6). After the process of the mesh 

discretization, the corresponding volume fractions of pores, aggregates and cement paste are 

0.48%, 51.27% and 48,25%, which satisfy the volume fractions from 0.47% to 0.50% for pores, 

from 50.72% to 51.84% for aggregates, and 48.81% to 47.66% for cement paste in [16]. 

 

 

 

(a) 

 
 

 

(b) 

 

(c) 
Figure 7. Tension test of a realistic microstructure obtained by XR-CT: geometry and loading 

conditions: (a) XR-CT image in Ren et al. [16]; (b) horizontal tension test; (c) vertical tension test. 
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(a) 

 
(b) 

Figure 8. A microstructure obtained by XR-CT: (a) the shapes of three phases is recognized by [18]: 

mortar (blue), aggregates (black) and pores (white); (b) zero isovalue is solved by a level-set [17]. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Horizotal tension test: the crack initiation and propagation: (a) solution 1; (b) solution 2; (c) 

Ren et al. [16]. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Vertical tension test: the crack initiation and propagation: (a) solution 1; (b) solution 2; (c) 

Ren et al. [16]. 

The material parameters of aggregate and mortar are 70 GPa,=iE  0.2, =i
 25 GPa=mE  

and 0.2. =m
The toughness 30 N / m.= =I

c cG G The fracture strength is taken as 3 MPa=ut  (see 

in [16]). We can choose the very compliant properties for the pore as 610 GPa,−=pE  0.2. =p
In 

the horizontal and vertical tension tests, we use the constant displacement increments 
6u = 2x10 mm−  during 240 load increments. The structure is discretized into 600x600 

quadrilateral elements. The regularization parameter is chosen as 0.13 mm. =  The evolutions of 
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crack for the horizontal tension test with two solutions of strain decompositions (14) and (18) 

and the ones obtained in [16] are shown in Fig. 9a-c, respectively. The crack evolutions for the 

vertical tension test are presented in Fig. 10. Meanwhile, Fig. 11 shows the comparison of the 

stress- strain curves of the horizontal tension test and the vertical tension test between [16] with 

two proposed solutions. In Fig. 11, the stress is calculated by dividing the total nodal reaction 

load of all the nodes on the boundary by the side length of the microstructure, and the strain is 

the ratio of the resultant displacement prescribed at the side of the microstructure to its side 

length. 
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(b) 

Figure 11. Comparison of the load-displacement curves between [16] with two solutions of strain 

orthogonal decompositions (14) and (18): (a) horizontal tension test; (b) vertical tension test. 

From two proposed strain decompositions (14) and (18), several cracks nucleate at the pores, 

while other cracks initiate at the interface of the phases and then spread into the matrix until the 

fully damage during the displacement increments (see Figs. 9-10). The obtained results are very 

similar to the experimental results presented in [16]. Furthermore, in Fig. 11, it can be seen that 

the stress-strain relationships with two solutions of strain decompositions (14) and (18) exhibit a 

good agreement with ones provided in [16]. Moreover, the behavior curves of two present 

solutions are smoother than that of [16], especially, when the microstructure is nearly fully 

damage. This can be explained that, two strain orthogonal decompositions of this paper can 

eliminate the singularity points on the behavior curve and the spurious effect in the 

microstructure in the damage process to improve the accuracy of material behaviors. 

The obtained results of the crack paths and the behavior curves demonstrate the present 

numerical modelling are the robust tools to predict the complex crack paths in the interaction of 

the bulk damage and the interfacial damage in the realistic microstructure obtained by XR-CT. 

4. CONCLUSION AND PERSPECTIVES  

In this work, we have applied two strain orthogonal decompositions into the phase-field with 

the interfacial damage to simulate the fracture in the very complex and heterogeneous material. 

The first example in which the interface between two structural domains is assumed to be simple 

and smooth, the crack nucleation and propagation are very efficient and accurate. 

       In the second example of the microstructure containing randomly distributed inclusions with 

their various shapes of the interface and randomly occurrence densities, the microcrack is created 



 

Transport and Communications Science Journal, Vol.74, Issue 1 (01/2023), 20-34 

 

33 

 

not only by interfacial damage and but also by the bulk damage. The simulation of the crack with 

two proposed solutions of strain orthogonal decompositions is a good tool to predict the crack 

propagation in composites with complex microstructures. 

In the last example, we have simulated the damage in a realistic microstructure obtained by 

XR-CT. This microstructure contains multi-phases: mortar, aggregates, and pore. The numerical 

techniques like a level-set function and a supplemental sub-function are used to determine the 

arbitrary shape of the interfaces. In this paper, the strain orthogonal decompositions of [19] have 

used and implemented in this phase field modelling with two proposed solutions. This helps to 

eliminate the singularity points on the behavior curve and the spurious effect in the structure in 

the damage process to improve the accuracy of material responses. 

However, all the numerical examples given in this paper are two-dimensional, and the 

materials considered are brittle or quasi-brittle. In principle, the methods developed in this paper 

are valid in the three-dimensional situation but this should be carried out in a near future. The 

extension of our work beyond brittle or quasi-brittle materials necessitates more effort. For 

example, considering viscoelasticity and plasticity is challenging, especially in the anisotropic 

case. 
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