ALGEBRA OF POLYNOMIALS BOUNDED ON SOME STRIPS

Du Thi Thu Trang* ${ }^{*}$, Nguyen Anh Ngoc
University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam

ARTICLE INFO

TYPE: Research Article
Received: 21/07/2021
Revised: 16/11/2021
Accepted: 14/01/2022
Published online: 15/01/2022
https://doi.org/10.47869/tcsj.73.1.8
*Corresponding author
Email: dutrang1986@utc.edu.vn; Tel: +84913026068

Abstract

In the present paper, for a finite sequence of single variable polynomials $g(x)=\left(g_{1}(x), g_{2}(x), \ldots, g_{n}(x)\right)$, we study the ring of geometrically bounded elements on a generalized strip $M_{c}(g)$ in \mathbb{R}^{n+1} which is the solution of the system of polynomial inequalities $g_{1}(x) \leq y_{1} \leq g_{1}(x)+c_{1}, g_{2}(x) \leq y_{2} \leq g_{2}(x)+c_{2} \ldots, g_{n}(x) \leq y_{n} \leq g_{n}(x)+c_{n}$. This ring is shown to be the finitely generated \mathbb{R}-algebra $\mathbb{R}\left[\mathrm{y}_{1}-\mathrm{g}_{1}(\mathrm{x}), \mathrm{y}_{2}-\mathrm{g}_{2}(\mathrm{x}), \ldots, \mathrm{y}_{n}-\mathrm{g}_{n}(\mathrm{x})\right]$ provided that $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is a positive vector. However, if $c=0$ then this algebra is not finitely generated in general. In particular, we point out that the ring of geometrically bounded elements on 'a generalized strip' of the form $M\left(g_{1}, g_{2}\right)$ in \mathbb{R}^{2} which is the solution of the polynomial inequality $g_{1}(x) \leq y \leq g_{2}(x)$ is trivial (i.e., is equal to \mathbb{R}) provided that $g_{1}(x)$ is less than $g_{2}(x)$ at infinity. As a consequence, we can describe the ring of geometrically bounded elements on a finite union of disjoint strips.

Keywords: Positivstellensatze, bounded polynomials, semi-algebraic.

1. INTRODUCTION

Starting with the $17^{\text {th }}$ Hilbert's Problem, many problems have arisen in Real Algebraic Geometry, and many interesting results have been obtained. Given a basic closed semialgebraic set $K=\left\{y \in \mathbb{R}^{n}: f_{1}(y) \geq 0, f_{2}(y) \geq 0, \ldots, f_{m}(y) \geq 0\right\}$, where $f_{1}, f_{2}, \ldots, f_{m}$ are real polynomials. Denominator-free Positivstellensatze are results characterizing all polynomials,
which are positive on K in terms of sums of squares and the polynomials f_{i} used to describe K. Theorems about the existence of such representations have various applications, notably in problems of optimizing polynomial functions on semi-algebraic sets. For a survey and details, we refer the reader to $[1-5]$ and the references therein.

In the case K is compact, Schmudgen [6] has proved that any polynomial, which is positive on K, is in the pre-ordering $T=T\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ (T is the set of finite sums of elements in the form $s_{e} f_{1}^{e_{1}} f_{2}^{e_{2}} \ldots f_{m}^{e_{m}}$, where $e_{i} \in\{0,1\}$ and each s_{e} is a sum of squares of polynomials). For non-compact case, there are some results such as [7, 8], etc.

Note that Schweighofer [9] gave an algebraic proof of Schmudgen Positivstellensatze [6, Corollary 3]. In this proof, the bounded algebra is an important key. (From that proof, many works studying the algebra of polynomials bounded on a semi-algebraic set have been published such as [10-12], etc).

The strip $\mathbb{R} \times[0,1]$ was studied in [13] (or also in [14]) which stated that a real polynomial which is nonnegative on a strip $\mathbb{R} \times[0,1]$ belongs to the pre-ordering $T(y(1-y))$. Replacing the horizontal lines $y=0, y=1$ by $y_{i}=g_{i}(x), y_{i}=g_{i}(x)+c_{i}$, we define a generalized strip as follows:

$$
M_{c}(g)=M_{c}\left(g_{1}, \ldots, g_{n}\right):=\left\{(x, y) \in \mathbb{R}^{1+n}: g_{i}(x) \leq y_{i} \leq g_{i}(x)+c_{i} ; \forall i=1,2 \ldots, n\right\},
$$

where $g_{i}(x)$ are real single variable polynomials and $c=\left(c_{1}, \ldots, c_{n}\right)$ is a vector of positive coordinates. When $n=1, g \equiv 0$ and $c=1$ the strip $M_{1}(0)=\mathbb{R} \times[0,1]$ is defined as in [13]. In this paper, we calculate the algebra of polynomials which are bounded on the generalized strips $M_{c}\left(g_{1}, \ldots, g_{n}\right)$. It turns out that the algebra mentioned here is finitely generated (Theorem 2.1). We recall that \mathbb{R} - algebra A is said to be finitely generated if there exists a finite set $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ such that $A=\mathbb{R}[U]=\mathbb{R}\left[u_{1}, u_{2}, \ldots, u_{k}\right]$.

However, when $c=0$ and $n=1$ the generalized strip $M_{0}(g)$ is the curve $y=g(x)$, and the algebra of polynomials bounded on $y=g(x)$ is not finitely generated in general (Corollary 2.2).

2. MAIN RESULTS

Throughout this paper, \mathbb{Z} denotes the set of integer numbers, \mathbb{N} the set of positive integer numbers, and \mathbb{R}^{n} the Euclidean space of dimension n. The ring of real polynomials in n variables y_{1}, \ldots, y_{n} is denoted by $\mathbb{R}[y]=\mathbb{R}\left[y_{1}, \ldots, y_{n}\right]$ and the ring of real polynomials in single variable x is denoted by $\mathbb{R}[x]$. For a subset K of \mathbb{R}^{n}, by $B(K)$ we denote the set of all polynomials bounded on K. Then $B(K)$ is called the bounded algebra and is a subalgebra of $\mathbb{R}[y]$ over \mathbb{R}.

We start with the bounded algebra on a compact cross-section set.
Lemma 2.1. Let $n \in \mathbb{N}$ and K be a compact subset of \mathbb{R}^{n}. Suppose that

$$
\begin{equation*}
K \backslash p^{-1}(0) \neq \varnothing ; \forall p \in \mathbb{R}[y] \backslash\{0\} . \tag{1}
\end{equation*}
$$

Then the algebra of polynomials in $\mathbb{R}\left[x, y_{1}, y_{2}, \ldots, y_{n}\right]$ which are bounded on $\mathbb{R} \times K$ is $\mathbb{R}[y]=\mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$.

Proof:
Since K is compact, we immediately get $\mathbb{R}[y] \subseteq B(\mathbb{R} \times K)$. We prove the converse direction. For $f(x, y) \in B(\mathbb{R} \times K)$, we can write

$$
\begin{equation*}
f(x, y)=\sum_{i=0}^{m} f_{i}(y) x^{i} . \tag{2}
\end{equation*}
$$

Assume that there is an index $i>0$ such that $f_{i} \neq 0$. Since K has the property (1), there exists $y_{0} \in K$ such that $f_{i}\left(y_{0}\right) \neq 0$. Hence, the single variable polynomial $f\left(x, y_{0}\right)$ is of degree at least $i>0$ and so it cannot be bounded on \mathbb{R}. This is a contradiction. Therefore, $f_{i}=0, \forall i>0$ and $f(x, y)=f_{0}(y)$, i.e., $f(x, y) \in \mathbb{R}[y]$.

Hence, we have $B(\mathbb{R} \times K)=\mathbb{R}[y]$.
Corollary 2.1. Let $n \in \mathbb{N}$ and K be a compact subset of \mathbb{R}^{n}. If the interior of K is non-empty, then the algebra of polynomials in $\mathbb{R}\left[x, y_{1}, y_{2}, \ldots, y_{n}\right]$ which are bounded on $\mathbb{R} \times K$ is $\mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$.

Proof:
Since the interior of K is non-empty, K contains an open ball and so the dimension of K is n. On the other hand, for all non-zero polynomial $p \in \mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$, the hypersurface $p^{-1}(0)$ is of dimension $n-1$. Hence, $K \backslash p^{-1}(0) \neq \varnothing$ and thus the property (1) holds. Therefore $B(\mathbb{R} \times K)=\mathbb{R}[y]$.

Let $g(x)=\left(g_{1}(x), g_{2}(x), \ldots, g_{n}(x)\right)$ be a vector of n polynomials in the single variable ring $\mathbb{R}[x]$ and $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ a vector of positive numbers. A generalized strip $M_{c}(g)$ is a closed basic semi-algebraic set defined by

$$
\begin{equation*}
M_{c}(g):=\left\{(x, y) \in \mathbb{R}^{1+n}: g_{i}(x) \leq y_{i} \leq g_{i}(x)+c_{i} ; \forall i=1,2 \ldots, n\right\} . \tag{3}
\end{equation*}
$$

Theorem 2.1. Let $g, c, M_{c}(g)$ be defined as above. Then the algebra of polynomials bounded on $M_{c}(g)$ is generated by $y_{1}-g_{1}(x), y_{2}-g_{2}(x), \ldots, y_{n}-g_{n}(x)$, i.e.,

$$
\begin{equation*}
B\left(M_{c}(g)\right)=\mathbb{R}\left[y_{1}-g_{1}(x), y_{2}-g_{2}(x), \ldots, y_{n}-g_{n}(x)\right] . \tag{4}
\end{equation*}
$$

Proof:
Performing change of variables $z_{i}=y_{i}-g_{i}(x)$ for all $i=\overline{1, n}$, we have $(x, y) \in M_{c}(g)$ if and only if $(x, z) \in \mathbb{R} \times[0, c]$, where $[0, c]=\left[0, c_{1}\right] \times \ldots \times\left[0, c_{n}\right]$ and $z=\left(z_{1}, \ldots, z_{n}\right)$. Applying Corollary 2.1 with $K=[0, c]$, we get that a polynomial $p(x, z) \in \mathbb{R}[x, z]$ is bounded on $\mathbb{R} \times[0, c]$ if and only if $p(x, z) \in \mathbb{R}[z]$. Hence, a polynomial $f(x, y)$ is bounded on $M_{c}(g)$ if
and only if $f(x, z+g(x))$ is bounded on $\mathbb{R} \times[0, c]$, and so if and only if there exists $p(z) \in \mathbb{R}[z]$ such that $f(x, z+g(x))=p(z)$. That means

$$
f(x, y)=p(y-g(x))=p\left(y_{1}-g_{1}(x), \ldots, y_{n}-g_{n}(x)\right) .
$$

Remark 2.1: If we replace the strip $M_{c}(g)$ in Theorem 2.1 by the corresponding half strip:

$$
\begin{equation*}
M_{c}(g) \cap\left\{(x, y) \in \mathbb{R}^{1+n}: x \geq x_{0}\right\} \tag{5}
\end{equation*}
$$

then the algebra of polynomials bounded on the half strip is the same as the one on the strip $M_{c}(g)$. The proof follows similarly from the proof of Theorem 2.1, since the algebra of polynomials bounded on $\left[\mathrm{x}_{0},+\infty\right] \times[0, c]$ is the same as that on $\mathbb{R} \times[0, c]$. Indeed, applying Corollary 2.1 for $K=[0, c]$ we have that the algebra of polynomials in $\mathbb{R}\left[x, y_{1}, y_{2}, \ldots, y_{n}\right]$ bounded on $\mathbb{R} \times[0, c]$ is $\mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$. By a similar argument as in the proof of Lemma 2.1 we also get that the algebra of polynomials bounded on $\left[x_{0},+\infty\right] \times K$ is $\mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$, where K has Property (1). Applying this result for $K=[0, c]$ we find that $B\left(\left[x_{0},+\infty\right] \times[0, c]\right)$ is also $\mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$.

For any single variable polynomials $g_{1}(x), g_{2}(x)$, 'a generalized strip' is defined in the following form:

$$
\begin{equation*}
M\left(g_{1}, g_{2}\right):=\left\{(x, y) \in \mathbb{R}^{2}: g_{1}(x) \leq y \leq g_{2}(x)\right\} . \tag{6}
\end{equation*}
$$

We say $g_{1}<g_{2}$ at infinity if $\lim _{x \rightarrow+\infty}\left(g_{2}(x)-g_{1}(x)\right)=+\infty$ or $\lim _{x \rightarrow-\infty}\left(g_{2}(x)-g_{1}(x)\right)=+\infty$. In the following proposition, we show that the algebra of bounded polynomials becomes trivial on $M\left(g_{1}, g_{2}\right)$ if $g_{1}<g_{2}$ at infinity.

Proposition 2.1. Let $M\left(g_{1}, g_{2}\right)$ be defined as above. Suppose that $g_{1}<g_{2}$ at infinity. Then the algebra of polynomials bounded on $M\left(g_{1}, g_{2}\right)$ is \mathbb{R}.

In order to prove Proposition 2.1, we need the following lemma.
We denote by cone $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ the convex cone finitely generated by $v_{1}, v_{2}, \ldots, v_{m}$ in \mathbb{R}^{n}, i.e.,

$$
\begin{equation*}
\operatorname{cone}\left(v_{1}, v_{2}, \ldots, v_{m}\right):=\left\{\sum_{i=1}^{m} \lambda_{i} v_{i}: \lambda_{i} \geq 0 ; \forall i=1,2, \ldots, m\right\} . \tag{7}
\end{equation*}
$$

In this paper, we only consider finitely generated convex cones. The dimension of the cone cone $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ is defined to be the dimension of the $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{m}\right)$. Suppose that C is a cone. We denote by $C_{v}:=v+C$ the translation of C by $v \in \mathbb{R}^{n}$. The dimension of C_{v} is defined to be the dimension of C.

Lemma 2.2. Let $n \in \mathbb{N}$ and K be a subset of \mathbb{R}^{n}. If K contains an n-dimensional C_{v} for some cone C and vector $v \in \mathbb{R}^{n}$, then the bounded algebra $B(K)$ is trivial, i.e., $B(K)=\mathbb{R}$.

Proof:
If K contains an n-dimensional C_{v} then there exists an affine transformation $\Phi^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, y \mapsto A y+y_{0}$, where A is a real matrix of order $n \times n$, induced by the \mathbb{R} algebra automorphism Φ of $\mathbb{R}[y]$ defined by $f(y) \mapsto f\left(A y+y_{0}\right)$. The mapping Φ^{*} transforms K onto a region containing the first orthant $y_{1} \geq 0, y_{2} \geq 0, \ldots, y_{n} \geq 0$. Therefore, to prove the lemma, we need to show that $B(K)=\mathbb{R}$ in the case that K contains the first orthant.

Let $f(y) \in \mathbb{R}[y]$ be a polynomial of degree d such that $f(y)$ is bounded on K. We can write

$$
\begin{equation*}
f(y)=\sum_{i=0}^{d} f_{i}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \tag{8}
\end{equation*}
$$

where f_{i} is a homogeneous polynomial of degree i for every $i=0,1,2, \ldots, d$. Assume that $d>0$. Since $f_{d} \neq 0$, there is a point $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in the first orthant such that $f_{d}(a) \neq 0$ (such a point a exists because the dimension of the first orthant is n while that of the hypersurface $f_{d}^{-1}(0)$ is $\left.n-1\right)$. Take a parameter curve $y(t)=a t ; t \in(0,+\infty)$. Then $y(t)$ belongs to the first orthant, hence it is contained in K. In addition, the degree of the single variable polynomial $f(y(t))=f_{d}(a) t^{d}+\ldots+f_{0}(a)$ is $d>0$ so $f(y(t))$ is unbounded on $(0,+\infty)$. This contradicts with the hypothesis of $f(y)$. Therefore, $d=0$ and $B(K)=\mathbb{R}$.

Proof of Proposition 2.1:

- Case 1: If $\lim _{x \rightarrow+\infty}\left(g_{2}(x)-g_{1}(x)\right)=+\infty$ then there exist $a>0$ and $k \in \mathbb{N}$ such that

$$
\begin{equation*}
g_{2}(x)-g_{1}(x) \sim a x^{k} \text { as } x \rightarrow+\infty . \tag{9}
\end{equation*}
$$

Changing of variables $z=y-g_{1}(x)$, we have that (x, y) belongs to $M\left(g_{1}, g_{2}\right)$ if and only if (x, z) belongs to $M:=\left\{(x, z) \in \mathbb{R}^{2}: 0 \leq z \leq g_{2}(x)-g_{1}(x)\right\}$. By the property (9), there exists x_{1} such that $\left\{(x, z) \in \mathbb{R}^{2}: 0 \leq z \leq \frac{a}{2} x, x \geq x_{1}\right\} \subset M$. So M contains the 2-dimensional translation C_{v} of the cone $C=\operatorname{cone}\left((1,0) ;\left(1, \frac{a}{2}\right)\right)$ by $v=\left(x_{1}, 0\right)$. From Lemma 2.2, the bounded algebra $B(M)$ is trivial. Therefore, the algebra of polynomials which are bounded on $M\left(g_{1}, g_{2}\right)$ is also \mathbb{R}.

- Case 2: If $\lim _{x \rightarrow-\infty}\left(g_{2}(x)-g_{1}(x)\right)=+\infty$ then by changing of variable $x=-t$, we have

$$
\lim _{t \rightarrow+\infty}\left(g_{2}(-t)-g_{1}(-t)\right)=\lim _{x \rightarrow-\infty}\left(g_{2}(x)-g_{1}(x)\right)=+\infty .
$$

Put $\bar{M}:=\left\{(t, y) \in \mathbb{R}^{2}: g_{1}(-t) \leq y \leq g_{2}(-t)\right\}$. Then (x, y) belongs to $M\left(g_{1}, g_{2}\right)$ if and only if (t, y) belongs to \bar{M}. According to Case 1 , we obtain $B(\bar{M})=\mathbb{R}$. Hence, the bounded algebra $B\left(M\left(g_{1}, g_{2}\right)\right)$ is also \mathbb{R}.

Remark 2.2: In view of the proof of Proposition 2.1, if we replace the strip $M\left(g_{1}, g_{2}\right)$ by the corresponding half strip:

$$
\begin{equation*}
M\left(g_{1}, g_{2}\right):=M\left(g_{1}, g_{2}\right) \cap\left\{(x, y) \in \mathbb{R}^{2}: x \geq x_{0}\right\}, \tag{10}
\end{equation*}
$$

then the algebra of polynomials bounded on the half strip is the same as the one on the strip if $g_{1}<g_{2}$ at positive infinity $\left(\lim _{x \rightarrow+\infty}\left(g_{2}(x)-g_{1}(x)\right)=+\infty\right)$. We use the same argument as Case 1 in the proof of Proposition 2.1. Performing change of variables $z=y-g_{1}(x)$, we find that (x, y) belongs to the half strip $M\left(g_{1}, g_{2}\right)$ if and only if (x, z) belongs to $M^{\prime}:=\left\{(x, z) \in \mathbb{R}^{2}: 0 \leq z \leq g_{2}(x)-g_{1}(x), x \geq x_{0}\right\}$. By the property (9), there exists $x_{1} \geq x_{0}$ such that M^{\prime} contains 2-dimensional translation C_{v} of the cone $C=\operatorname{cone}\left((1,0) ;\left(1, \frac{a}{2}\right)\right)$ by $v=\left(x_{1}, 0\right)$. From Lemma 2.2, the bounded algebra $B\left(M^{\prime}\right)$ is trivial. Hence $B\left(M\left(g_{1}, g_{2}\right)\right)$ is also \mathbb{R}.

From Theorem 2.1 and Proposition 2.1, we get the following corollaries.
Corollary 2.2. Let $g_{1}(x), g_{2}(x)$ be single variable polynomials and $M\left(g_{1}, g_{2}\right)$ defined in eq. (6). Then the following statements hold.

1. If $g_{2}(x)-g_{1}(x)$ is equal to a positive constant c then $B\left(M\left(g_{1}, g_{2}\right)\right)=\mathbb{R}\left[y-g_{1}(x)\right]$.
2. If $g_{1}=g_{2}$ then $B\left(M\left(g_{1}, g_{2}\right)\right)=\left(y-g_{1}(x)\right) \mathbb{R}[x, y]+\mathbb{R}$.

Proof:

1. The first statement follows directly from Theorem 2.1 by $M\left(g_{1}, g_{2}\right)=M_{c}\left(g_{1}\right)$.
2. If $g_{1}=g_{2}$ then $M\left(g_{1}, g_{2}\right)=\left\{(x, y) \in \mathbb{R}^{2}: y=g_{1}(x)\right\}$.

It is clear that, $\left(y-g_{1}(x)\right) \mathbb{R}[x, y]+\mathbb{R}$ is a subset of $B\left(M\left(g_{1}, g_{2}\right)\right)$. Conversely, let $f(x, y)$ be an element of $B\left(M\left(g_{1}, g_{2}\right)\right)$. Then we can write

$$
f(x, y)=f_{1}(x, y)\left(y-g_{1}(x)\right)+f_{0}(x),
$$

where $f_{1}(x, y) \in \mathbb{R}[x, y] ; f_{0}(x) \in \mathbb{R}[x]$. Thus, $f(x, y)$ is bounded on $M\left(g_{1}, g_{2}\right)$ if and only if $f_{0}(x)$ is bounded on \mathbb{R}. Hence, there is a constant $a \in \mathbb{R}$ such that $f_{0}(x)=a, \forall x \in \mathbb{R}$. This means that $f(x, y)$ belongs to $\left(y-g_{1}(x)\right) \mathbb{R}[x, y]+\mathbb{R}$.

Since $B\left(K_{1} \cup K_{2}\right)=B\left(K_{1}\right) \cap B\left(K_{2}\right)$ with $K_{1}, K_{2} \subset \mathbb{R}^{n}$, Theorem 2.1 and Proposition 2.1 can be stated for a finite union of generalized strips as follows.

Corollary 2.3. Let $k \in \mathbb{N}$ and $g_{1}(x), g_{2}(x), \ldots, g_{2 k}(x) \in \mathbb{R}[x]$ be distinct polynomials such that $\lim _{x \rightarrow+\infty}\left(g_{i+1}(x)-g_{i}(x)\right)>0, \forall i=\overline{1,2 k-1}$. Let $K\left(g_{1}, \ldots, g_{2 k}\right)$ be a subset of \mathbb{R}^{2} defined by

$$
\begin{equation*}
K\left(g_{1}, \ldots, g_{2 k}\right):=\left\{(x, y) \in \mathbb{R}^{2}: \prod_{i=1}^{2 k}\left(y-g_{i}(x)\right) \leq 0\right\} . \tag{11}
\end{equation*}
$$

Then the following statements hold.

1. If there exists an index $i_{0} \in\{1,2, \ldots, 2 k-1\}$ such that $\lim _{x \rightarrow+\infty}\left(g_{i_{0}+1}(x)-g_{i_{0}}(x)\right)=+\infty$ then $B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right)$ is trivial.
2. If $\lim _{x \rightarrow+\infty}\left(g_{i+1}(x)-g_{i}(x)\right)$ is a positive constant for al $i \in\{1,2, \ldots, 2 k-1\}$ then $B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right)$ is equal to $\mathbb{R}\left[y-g_{1}(x)\right]$.

Proof:

1. By the assumption $\lim _{x \rightarrow+\infty}\left(g_{i+1}(x)-g_{i}(x)\right)>0, \forall i=\overline{1,2 k-1}$, there exists $x_{0} \in \mathbb{R}$ such that for all $x \geq x_{0}$, we have $g_{1}(x)<g_{2}(x)<\ldots<g_{2 k}(x)$. Using the notation in Remark 2.2, we get $M\left(g_{2 i-1}, g_{2 i}\right) \subset K\left(g_{1}, \ldots, g_{2 k}\right)$ for all $i=\overline{1, \ldots, k}$. This deduces $\bigcup_{i=1}^{k} M\left(g_{2 i-1}, g_{2 i}\right) \subset K\left(g_{1}, \ldots, g_{2 k}\right)$. Therefore,

$$
\begin{equation*}
B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right) \subset B\left(\bigcup_{i=1}^{k} M\left(g_{2 i-1}, g_{2 i}\right)\right)=\bigcap_{i=1}^{k} B\left(M\left(g_{2 i-1}, g_{2 i}\right)\right) . \tag{12}
\end{equation*}
$$

Since $\mathbb{R} \subset B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right)$, to prove the first statement we only need to show that $B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right) \subset \mathbb{R}$.

- Case 1: If $i_{0}=2 j-1$ for some $j \in\{1,2, \ldots, k\}$ then $\lim _{x \rightarrow+\infty}\left(g_{2 j}(x)-g_{2_{j-1}}(x)\right)=+\infty$ by the assumption. So according to Remark 2.2, we get $B\left(M\left(g_{2 j-1}, g_{2 j}\right)\right)=\mathbb{R}$. Hence, by the property (12), we deduce $B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right) \subset \mathbb{R}$.
- Case 2: If $i_{0}=2 j$ for some $j \in\{1,2, \ldots, k\}$ then $\lim _{x \rightarrow+\infty}\left(g_{2 j+1}(x)-g_{2 j}(x)\right)=+\infty$.

If $\lim _{x \rightarrow+\infty}\left(g_{2 j}(x)-g_{2 j-1}(x)\right)=+\infty$ or $\lim _{x \rightarrow+\infty}\left(g_{2 j+2}(x)-g_{2 j+1}(x)\right)=+\infty$ then from Case 1 , we have $B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right)=\mathbb{R}$. Now, we assume

$$
\lim _{x \rightarrow+\infty}\left(g_{2 j}(x)-g_{2 j-1}(x)\right)=c_{j} ; \lim _{x \rightarrow+\infty}\left(g_{2 j+2}(x)-g_{2 j+1}(x)\right)=c_{j+1},
$$

where c_{j}, c_{j+1} are positive constants. Since $g_{i} \in \mathbb{R}[x]$, for $i=2 j-1, \ldots, 2 j+2$, this implies

$$
\begin{equation*}
g_{2 j}=g_{2 j-1}+c_{j}, g_{2 j+2}=g_{2 j+1}+c_{j+1} . \tag{11}
\end{equation*}
$$

By Remark 2.1, we obtain:

$$
\begin{align*}
& B\left(M\left(g_{2 j-1}, g_{2 j}\right)\right)=\mathbb{R}\left[y-g_{2 j-1}(x)\right]=\mathbb{R}\left[y-g_{2 j}(x)\right], \tag{14}\\
& B\left(M\left(g_{2_{j+1}}, g_{2_{j+2}}\right)\right)=\mathbb{R}\left[y-g_{2 j+1}(x)\right] . \tag{15}
\end{align*}
$$

We next prove that $B\left(M\left(g_{2_{j-1}}, g_{2 j}\right)\right) \cap B\left(M\left(g_{2 j+1}, g_{2 j+2}\right)\right)=\mathbb{R} \quad$ by showing $\mathbb{R}\left[y-g_{2 j}(x)\right] \cap \mathbb{R}\left[y-g_{2 j+1}(x)\right]=\mathbb{R}$, see eq. (14) and eq. (15). Let $f(x, y) \in \mathbb{R}\left[y-g_{2 j}(x)\right] \cap \mathbb{R}\left[y-g_{2 j+1}(x)\right]$. Since $f(x, y) \in \mathbb{R}\left[y-g_{2 j}(x)\right]$, we have the following representation

$$
f(x, y)=\sum_{i=0}^{m} a_{i}\left(y-g_{2 j}(x)\right)^{i} ; a_{i} \in \mathbb{R} ; i=\overline{1, m} .
$$

We can rewrite $f(x, y)$ in the form

$$
\begin{align*}
f(x, y) & =\sum_{i=0}^{m} a_{i}\left[\left(y-g_{2 j+1}(x)\right)+\left(g_{2 j+1}(x)-g_{2 j}(x)\right)\right]^{i} \\
& =\sum_{i=1}^{m} h_{i}(x)\left(y-g_{2 j+1}(x)\right)^{i}+\sum_{i=0}^{m} a_{i}\left(g_{2 j+1}(x)-g_{2 j}(x)\right)^{i} ; h_{i}(x) \in \mathbb{R}[x] . \tag{16}
\end{align*}
$$

By $f(x, y) \in \mathbb{R}\left[y-g_{2 j+1}(x)\right]$ and eq. (16) we get

$$
\left\{\begin{array}{l}
h_{i}(x) \in \mathbb{R}, i=\overline{1, m} \\
q(x):=\sum_{i=0}^{m} a_{i}\left(g_{2 j+1}(x)-g_{2 j}(x)\right)^{i} \in \mathbb{R} .
\end{array}\right.
$$

Observe that the hypothesis $\lim _{x \rightarrow+\infty}\left(g_{2 j+1}(x)-g_{2 j}(x)\right)=+\infty \quad$ implies $\operatorname{deg}\left(g_{2 j+1}(x)-g_{2 j}(x)\right)>0$. So if $m>0$ then $q(x) \notin \mathbb{R}$. Hence, $m=0$ or $f(x, y)=a_{0} \in \mathbb{R}$. Therefore $B\left(M\left(g_{2 j-1}, g_{2 j}\right)\right) \cap B\left(M\left(g_{2 j+1}, g_{2 j+2}\right)\right)=\mathbb{R}$. By the property (12) we conclude that $B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right) \subset \mathbb{R}$.
2. Assume that $\lim _{x \rightarrow+\infty}\left(g_{i+1}(x)-g_{i}(x)\right)=c_{i}>0$ for all $i \in\{1,2, \ldots, 2 k-1\}$. We have

$$
\begin{equation*}
g_{i+1}(x)=g_{i}(x)+c_{i}=g_{1}(x)+c_{1}+\ldots+c_{i}, \forall x \in \mathbb{R}, i=\overline{1,2 k-1} . \tag{16}
\end{equation*}
$$

Using the notation in Proposition 2.1 and Theorem 2.1, we have

Transport and Communications Science Journal, Vol. 73, Issue 1 (01/2022), 90-99

$$
\begin{equation*}
K\left(g_{1}, \ldots, g_{2 k}\right)=\bigcup_{i=1}^{k} M\left(g_{2 i-1}, g_{2 i}\right)=\bigcup_{i=1}^{k} M_{c_{2 i-1}}\left(g_{2 i-1}\right) . \tag{17}
\end{equation*}
$$

Otherwise, by Corollary 2.2 and eq. (16), we get

$$
B\left(M\left(g_{2 i-1}, g_{2 i}\right)\right)=\mathbb{R}\left[y-g_{2 i-1}(x)\right]=\mathbb{R}\left[y-g_{1}(x)-c_{1}-c_{2}-\ldots-c_{2 i-2}\right]=\mathbb{R}\left[y-g_{1}(x)\right] .
$$

From eq. (17), we find

$$
B\left(K\left(g_{1}, \ldots, g_{2 k}\right)\right)=\bigcap_{i=1}^{k} B\left(M\left(g_{2 i-1}, g_{2 i}\right)\right)=\mathbb{R}\left[y-g_{1}(x)\right] .
$$

4. CONCLUSION

In this paper, we have described the algebra of polynomials bounded on some strips. On the Euclidean space of dimension $n+1$, we show that the algebra bounded on the generalized strip $M_{c}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ is finitely generated by the polynomials $y-g_{1}(x), \ldots, y-g_{n}(x)$ provided that c is a positive vector of \mathbb{R}^{n}. On the plane \mathbb{R}^{2}, the algebra bounded on the strip $M\left(g_{1}, g_{2}\right)$ depends on the limit $\lim _{x \rightarrow \infty}\left(g_{2}(x)-g_{1}(x)\right)$. The algebra is trivial if the limit is positive infinity; finitely generated by $y-g_{1}(x)$ if this limit is a positive constant and equal to $\left(y-g_{1}(x)\right) \mathbb{R}[x, y]+\mathbb{R}$ if this limit is zero. In addition, we also gave a corollary of this algebra on the finite union of generalized strips.

ACKNOWLEDGMENT

This research is funded by University of Transport and Communications (UTC) under grant number T2021-CB-006.

REFERENCES

[1]. H. V. Ha, T. S. Pham, Genericity in Polynomial Optimization, Series on Optimization and Its Applications, Vol. 3, World Scientific, 2017.
[2]. J. B. Lasserre, Moments, Positive Polynomials and their Applications, Imperial College Press, London, 2009.
[3]. M. Laurent, Sums of squares, moment matrices and optimization over polynomials, in: M. Putinar and S. Sullivant (Eds.), Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, Vol. 149, Springer, New York, 2009, pp. 157-270.
[4]. C. Scheiderer, Positivity and sums of squares: a guide to recent results, in: M. Putinar and S. Sullivant (Eds.), Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, Vol. 149, Springer, New York, 2009, pp. 271-324.
[5]. T. M. Ho, Trang T. Du, Polynomial optimization on some unbounded semi-algebraic, J. Optim. Theory Appl., 183 (2019) 352-363. https://doi.org/10.1007/s10957-019-01544-5
[6]. K. Schmudgen, The K-moment problem for compact semi-algebraic sets, Math. Ann., 289
(1991) 203-206. https://doi.org/10.1007/BF01446568
[7]. C. Scheiderer, Sums of squares on real algebraic surfaces, Manuscripta Math., 119 (2006) 395410. https://doi.org/10.1007/s00229-006-0630-5
[8]. H. V. Ha, T. M. Ho, Positive polynomials on nondegenerate basic semi-algebraic sets, Adv.

Geom., 16 (2016) 497-510. https://doi.org/10.1515/advgeom-2016-0017
[9]. M. Schweighofer, Iterated rings of bounded elements and generalizations of Schmudgen's Positivstellensatz, J. Reine Angew. Math., 554 (2003) 19-45. https://doi.org/10.1515/crll.2003.004
[10]. M. Michalska, Algebra of bounded polynomials on a set Zariski closed at infinity cannot be finitely generated, Bull. Sci. Math., 137 (2013) 705-715. https://doi.org/10.1016/j.bulsci.2013.02.006 [11]. P. Mondal, T. Netzer, How fast do polynomials grow on semi-algebraic sets?, J. Algebra, 413 (2014) 320-344. https://doi.org/10.1016/j.jalgebra.2014.05.006
[12]. K. Kurdyka, M. Michalska, S. Spodzieja, Bifurcation values and stability of algebras of bounded polynomials, Adv. Geom., 14 (2014) 631-646. https://doi.org/10.1515/advgeom-2014-0006
[13]. M. Marshall, Polynomials non-negative on a strip, Proc. Amer. Math. Soc., 138 (2010) 15591567. https://doi.org/10.1090/S0002-9939-09-10016-3
[14]. V. Powers, Positive polynomials and the moment problem for cylinders with compact crosssection, J. Pure Appl. Algebra, 188 (2004) 217-226. https://doi.org/10.1016/j.jpaa.2003.10.009

