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Abstract. In the present paper, for a finite sequence of single variable polynomials
g(x)=(gl(x),gz(x),...,gn(x)), we study the ring of geometrically bounded elements on a

generalized strip M_(g) in R™ which is the solution of the system of polynomial
inequalities g,(x)<y, <g,(X)+¢, , 9,(X) <Yy, <g,(X)+C, ..., 9,(X)<y,<g,(x)+c,. This
ring is shown to be the finitely generated R —algebra R[y,-g,(X),Y,-9,(X),....¥,-0,(X)]
provided that ¢ =(c,,c,,...,C,) is a positive vector. However, if c=0 then this algebra is not

finitely generated in general. In particular, we point out that the ring of geometrically
bounded elements on ‘a generalized strip’ of the form M(g,,g,) in R? which is the solution

of the polynomial inequality g,(x) <y <g,(x) is trivial (i.e., is equal to R) provided that
g,(x) is less than g,(x) at infinity. As a consequence, we can describe the ring of
geometrically bounded elements on a finite union of disjoint strips.
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1. INTRODUCTION

Starting with the 17" Hilbert's Problem, many problems have arisen in Real Algebraic
Geometry, and many interesting results have been obtained. Given a basic closed semi-

algebraic set K ={yeR":f,(y)20,f,(y)20,.., f, (y) 20}, where f,f, .. f are real
polynomials. Denominator-free Positivstellensatze are results characterizing all polynomials,
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which are positive on K in terms of sums of squares and the polynomials f, used to describe

K . Theorems about the existence of such representations have various applications, notably
in problems of optimizing polynomial functions on semi-algebraic sets. For a survey and
details, we refer the reader to [1-5] and the references therein.

In the case K is compact, Schmudgen [6] has proved that any polynomial, which is
positive on K, is in the pre-ordering T =T(f, f,,..., f ) (T is the set of finite sums of

elements in the form s, f*f,>...f™, where e €{0,1} and each s, is a sum of squares of
polynomials). For non-compact case, there are some results such as [7, 8], etc.

Note that Schweighofer [9] gave an algebraic proof of Schmudgen Positivstellensatze
[6, Corollary 3]. In this proof, the bounded algebra is an important key. (From that proof,
many works studying the algebra of polynomials bounded on a semi-algebraic set have been
published such as [10-12], etc).

The strip Rx[0,1] was studied in [13] (or also in [14]) which stated that a real
polynomial which is nonnegative on a strip R x[0,1] belongs to the pre-ordering T (y(1-Y)).
Replacing the horizontal lines y=0,y=1 by y, =g,(X),y.=0,(x)+c, , we define a
generalized strip as follows:

M. (g) = Mc(gl,...,gn)::{(x, Y)eR"™:g.(X) <y, <g,(X)+c,; Vi :1,2...,n},

where g,(x) are real single variable polynomials and c=(c,,...,c,) is a vector of positive
coordinates. When n=1,g=0 and c =1 the strip M,(0) =R x[0,1] is defined as in [13]. In

this paper, we calculate the algebra of polynomials which are bounded on the generalized
strips M, (9,,...9,). It turns out that the algebra mentioned here is finitely generated

(Theorem 2.1). We recall that R - algebra A is said to be finitely generated if there exists a
finite set U ={u,,u,,..,u,} suchthat A=R[U]=R[u,,u,,...,u.].

However, when ¢=0 and n=1 the generalized strip M,(g) is the curve y=g(x), and
the algebra of polynomials bounded on y=g(x) is not finitely generated in general
(Corollary 2.2).

2. MAIN RESULTS

Throughout this paper, Z denotes the set of integer numbers, N the set of positive
integer numbers, and R" the Euclidean space of dimension n. The ring of real polynomials
in n variables y;,...,y, is denoted by R[y]=R[y,,...,y,] and the ring of real polynomials in

single variable x is denoted by R[x]. For a subset K of R", by B(K) we denote the set of
all polynomials bounded on K. Then B(K) is called the bounded algebra and is a subalgebra
of R[y] over R.

We start with the bounded algebra on a compact cross-section set.

Lemma 2.1. Let ne N and K be a compact subset of R". Suppose that
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K\ p™(0) = J; vp e Ry]\{0}. @)
Then the algebra of polynomials in R[X,y,,Y,,...,y,] which are bounded on RxK is
RIY]=R[Y;: Ypree0 Yol
Proof:

Since K is compact, we immediately get R[y] < B(RxK). We prove the converse
direction. For f(Xx,y) e B(RxK), we can write

F(xy) =2 fi(X. @

Assume that there is an index i>0 such that f, 0. Since K has the property (1),
there exists y, € K such that f.(y,) = 0. Hence, the single variable polynomial f(X,y,) is of

degree at least i >0 and so it cannot be bounded on R. This is a contradiction. Therefore,
f.=0,Vvi>0and f(x,y)=f,(y),ie, f(xy)eRy].

Hence, we have B(R x K) =R[y].

Corollary 2.1. Let neN and K be a compact subset of R". If the interior of K is
non-empty, then the algebra of polynomials in R[X,Y,,V,,...,y,] Which are bounded on

RxK is R[Y,, Yy, ¥V, 1-
Proof:

Since the interior of K is non-empty, K contains an open ball and so the dimension of
K is n. On the other hand, for all non-zero polynomial p € R[y,,Y,,...,¥,], the hypersurface

p™(0) is of dimension n—1. Hence, K\ p™(0)=@ and thus the property (1) holds.
Therefore B(R x K) =R[y].

Let g(x) =(9,(x),9,(X),...,9,(x)) be a vector of n polynomials in the single variable
ring R[x] and ¢ =(c,,c,,...,C,) a vector of positive numbers. A generalized strip M_(g) is a
closed basic semi-algebraic set defined by

M. (@)= {(x,y) e R*": g,(x) <y, < g, () +C; Vi=12...,n}. (3)
Theorem 2.1. Let g, ¢, M_(g) be defined as above. Then the algebra of polynomials
bounded on M_(g) is generated by y, —g,(x), ¥, —9,(X),..., ¥, —9,(x), i.e.,
B(M.(9)) =RIy; = 9:(X), ¥ = G2 (X),-s ¥ = 0 (X)]. (4)
Proof:

Performing change of variables z, =y, —g,(x) for all i=1,n, we have x,y)eM_(9)
if and only if (x,z) e Rx[0,c], where [0,c]=[0,c,]x...x[0,c,] and z=(z,...,z,). Applying
Corollary 2.1 with K =[0,c], we get that a polynomial p(x,z)eR[x,z] is bounded on
Rx[0,c] ifand only if p(x,z) € R[z]. Hence, a polynomial f(Xx,y) is bounded on M_(g) if
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and only if f(x,z+g(x)) is bounded on Rx[0,c], and so if and only if there exists
p(z) e R[z] such that f(x,z+ g(x))= p(z). That means

f(xy)=p(y—9(x)=p(y,—9,(X),.... ¥, = 9,(x))-

Remark 2.1: If we replace the strip M_(g) in Theorem 2.1 by the corresponding half
strip:

Mc(g)ﬂ{(x, y)eR“”:xeo}, (5)
then the algebra of polynomials bounded on the half strip is the same as the one on the strip
M_.(g) . The proof follows similarly from the proof of Theorem 2.1, since the algebra of
polynomials bounded on [x,,+o0]x[0,c] is the same as that on Rx[0,c]. Indeed, applying
Corollary 2.1 for K =[0,c] we have that the algebra of polynomials in R[X,Y,,Y,,..., ¥,]
bounded on Rx[0,c] is R[yY,,Y,,...,¥,]. By a similar argument as in the proof of Lemma 2.1
we also get that the algebra of polynomials bounded on [x,,+]x K is R[y,, Y,,..., ¥,], where
K has Property (1). Applying this result for K =[0,c] we find that B([X,,+0]x[0,c]) is also

RIY, Ypseens Yol

For any single variable polynomials g,(x), g,(x), ‘a generalized strip’ is defined in the
following form:

M(9;,0,) ={(x y) eR*:g,(x) <y < g,(X)}. (6)

We say g, <g, at infinity if lim (g,(x)—g,(x))=+0 or lim (g,(x)—g,(x))=+wo. In the

X—>+00

following proposition, we show that the algebra of bounded polynomials becomes trivial on
M(g,,9,) if g, <g, atinfinity.

Proposition 2.1. Let M(g,,g,)be defined as above. Suppose that g, <g, at infinity.
Then the algebra of polynomials bounded on M(g,,g,) is R.

In order to prove Proposition 2.1, we need the following lemma.

We denote by cone(\v,,v,,...,v,,) the convex cone finitely generated by v;,v,,...,v,, in
R", i.e.,
m

A,
=1

cone(vl,vz,...,vm)::{ A ZO;Vizl,Z,...,m}. (7

In this paper, we only consider finitely generated convex cones. The dimension of the cone
cone(V,,V,,...,V,, ) is defined to be the dimension of the span(v,,v,,...,v, ). Suppose that C

is a cone. We denote by C, :=v+C the translation of C by ve R". The dimension of C, is
defined to be the dimension of C.

93



Transport and Communications Science Journal, Vol. 73, Issue 1 (01/2022), 90-99

Lemma 2.2. Let neN and K be a subset of R". If K contains an n-dimensional C,
for some cone C and vector veR", then the bounded algebra B(K) is trivial, i.e.,
B(K)=R.

Proof:
If K contains an n -dimensional C, then there exists an affine transformation
@ :R">R", y+— Ay+Y,, where A is a real matrix of order nxn, induced by the R -
algebra automorphism @ of R[y] defined by f(y)— f(Ay+y,). The mapping @
transforms K onto a region containing the first orthant y, >0,y, >0,...,y, >0. Therefore, to
prove the lemma, we need to show that B(K) =R in the case that K contains the first

orthant.

Let f(y)eR[y] be a polynomial of degree d such that f(y) is bounded on K. We
can write

f(v)=Z Fi (Vi Yarees Vi) 8)

where f. is a homogeneous polynomial of degree i for every i=0,12,...,d. Assume that
d >0. Since f; =0, there is a point a=(a,,a,,...,a,) in the first orthant such that f,(a)=0
(such a point a exists because the dimension of the first orthant is n while that of the
hypersurface f,™(0) is n—1). Take a parameter curve y(t)=at;te(0,+0). Then y(t)
belongs to the first orthant, hence it is contained in K. In addition, the degree of the single
variable polynomial f(y(t))= f,(a)t’+..+ f,(a) is d>0 so f(y(t)) is unbounded on

(0,+00). This contradicts with the hypothesis of f(y). Therefore, d =0 and B(K)=R.
Proof of Proposition 2.1:

o Case 1: If lim (g,(x)—g,(x))=+o then there exist a>0 and k € N such that

9,(X) —g,(x) ~ ax“ as x — +oo, 9)
Changing of variables z =y —g,(x), we have that (X, y) belongs to M(g,,g,) if and only if
(x,2) belongsto M = {(x, 2)eR*:0<2<g,(X)- gl(x)}. By the property (9), there exists x,

such that {(x,z)eRz:Oszs%x,xle}cM. So M contains the 2-dimensional

translation C, of the cone C=cone((1,0);(1,%)j by v=(x,0). From Lemma 2.2, the

bounded algebra B(M) is trivial. Therefore, the algebra of polynomials which are bounded
on M(g,,9,) isalso R.
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e Case 2: If lim (g,(x)—g,(x)) =+ then by changing of variable x =—t, we have

X—>—00

lim (gz(_t) - gl(_t)) = Iirl(gz(x) - g1(x)) = +o0.

t—+o0
Put M :={(t,y) e R®:g,(-t) < y < g,(-t)}. Then (x,y) belongs to M(g,,g,) if and only if
(t,y) belongs to M. According to Case 1, we obtain B(M)=IR. Hence, the bounded
algebra B(M(g,,9,)) isalso RR.

Remark 2.2: In view of the proof of Proposition 2.1, if we replace the strip M(g,,d,)
by the corresponding half strip:

M(0,,9,) = M(gy, 8,) N{(x, y) e R?: x= x|, (10)

then the algebra of polynomials bounded on the half strip is the same as the one on the strip if
9, <9, at positive infinity (lim (g,(x)—g,(x))=-+w). We use the same argument as Case 1

X—>+00

in the proof of Proposition 2.1. Performing change of variables z=y—g,(x), we find
that (x,y) belongs to the half strip M(g,,9,) if and only if (x,z) belongs to
M*'={(x,2) e R*:0<2<g,(x)—g,(X), X2 X,|. By the property (9), there exists x >x,

such that M ' contains 2-dimensional translation C, of the cone C :cone((l, O);(l,%)j by

v =(x,0). From Lemma 2.2, the bounded algebra B(M ") is trivial. Hence B(M(gl,gz)) is
also R.
From Theorem 2.1 and Proposition 2.1, we get the following corollaries.

Corollary 2.2. Letg,(x),9,(x) be single variable polynomials and M(g,,g,) defined
in eg. (6). Then the following statements hold.

1. If g,(x)—g,(x) is equal to a positive constant ¢ then B(M(g,,9,)) = R[y—g,(X)].
2. 1f g, =g, then B(M(0,,9,))=(y~ 8. (x))R[x, y]+R.

Proof:
1. The first statement follows directly from Theorem 2.1 by M(g,,d,) =M_(9,).

2. If g, =g, then M(g,,9,)={(x.y) e R*:y=g,(x)}.

It is clear that, (y—g,(X))R[x,y]+R is a subset of B(M(g,,9,)). Conversely, let
f (x,y) be an element of B(M(g,,9,)). Then we can write

f(xy)=f,(x Y)(y—8:00)+ f(x),
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where f,(x,y) e R[x,y]; f,(x) e R[x]. Thus, f(x,y) is bounded on M(g,,9,) if and only if
f,(x) is bounded on R. Hence, there is a constant a€ R such that f,(x)=a,vxeR. This
means that f(x,y) belongs to (y—g,(x))R[x, y]+R.

Since B(K,UK,)=B(K,)NB(K,) with K,K, cR", Theorem 2.1 and Proposition
2.1 can be stated for a finite union of generalized strips as follows.

Corollary 2.3. Let keN and g,(x),d,(X),..., 9, (X) € R[x] be distinct polynomials
such that lim (g,,,(x)—g;(x))>0,Vi=12k-1. LetK(g,,...,0,) be a subset of R* defined

by

K(Gyse O) = {(x. y)eR*:[J(y-g(x)< 0}- 1)

i=1
Then the following statements hold.
1. If there exists an index i, €{1,2,...,2k -1} such that lim (gioﬂ(x)—gio(x)):Jroo then

B(K(0y,-- 0y)) is trivial.

2. If XIiﬁrﬂo(gm(x)—gi(x)) is a positive constant for al ie{12,..,2k-1} then
B(K(9,,...,9,)) isequal to R[y—g,(X)].
Proof:
1. By the assumption 1im (g;.,,(X)~g;(x))>0,vi =1,2k -1, there exists x, € R such
that for all x> x;, we have g,(x) <g,(X) <...<0,,(X). Using the notation in Remark

22, we get M(9,,,9,)<K(g,....0,) for all i=1..,k . This deduces

i=1

k k
B(K(9,,-9a)) © B(UM (9214, 92i)] =NB(M (91,92} (12)
i=1 i=1
Since R c B(K(gl,..., 92k)), to prove the first statement we only need to show that
B(K(9y:-0)) = R.
o Case 1: If iy=2j-1 for some je{12,..k} then lim (g,;(x)—0,;,(X)) =+ by

the assumption. So according to Remark 2.2, we get B(M (9515 gzj)) =IR. Hence,

by the property (12), we deduce B(K(g,,....0,)) < R.
o Case2:If i,=2j forsome je{1,2...k} then lim(g,,(x)—g,;(x))=-+e.
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If 1im (g,;(X)— 9,;, (X)) =+ or 1im (g,.,(X) = g,;.,(X)) =+ then from Case 1,
we have B(K(g,,....9,))=R. Now, we assume
XILrEO(gzj(X)_g?_j—l(X)):Cj;XILrEO(QZjJrZ(X)_ngJrl(X))=Cj+l'

where c;,c;,, are positive constants. Since g, e R[x], for i=2j-1..,2j+2, this

j+l
implies
9, =921 7€, 92512 = U1 T Cjae (13)
By Remark 2.1, we obtain:
B(M(9y1,9,,)) = RIy ~ 0,001 = RIy - g, (X)], (14)
B(M(92j+1’gzj+2))=R[y_92j+1(X)]' (15)

We next prove that B(M(gzjfl,gzj))ﬂB(M(gZHl,gZHZ)):]R by showing
Rly-0,(0INRIY-0,,,()]=R, see eq (14) and eq. (15). Let

f(X,¥) € R[y—g,; COINRLY —g,;,,(X)]- Since f(x,y) e R[y—g,;(X)], we have the
following representation

fy)=Ya(y-0,(0);a eR;i=1m
i=0
We can rewrite f(x,y)in the form

09 =2 [(V - 92a0) +(82140 - 9:,00)]

:Zm:hi (x)(y— 921-+1(X))i +Zm:ai (gzm(x) ~0,, (x))i; h (x) € R[x]. (16)

i=0

By f(x,y)eR[y-g,;,(x)] and eq. (16) we get

h(x)eR,i=1m

90 = Za (02,409~ 95,(9) eR.
Observe  that  the hyp(_)thesis XILrEO(gzj+l(x)—gzj(x)):+w implies
deg(9,1.,(0-0,;(0))>0. So if m>0 then qg(x)gR. Hence, m=0 or
f(x,y)=a, e R. Therefore B(M(gZH,gzj))HB(M(gzj+1,gzj+2))=R. By the

property (12) we conclude that B(K(g,,...,d,)) = R.
2. Assume that lim (g;,,(X)—g;(x))=c, >0 forall i{12,..,2k -1} . We have

0.(X)=0,(X)+c, =9,(X)+¢C, +...+C,VxeR,i=12k -1 26)
Using the notation in Proposition 2.1 and Theorem 2.1, we have
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k k
K(gl, I g2k) = U M (92i,1, gzi) = U MCzH (gzpl)- an
i=1 i=1

Otherwise, by Corollary 2.2 and eqg. (16), we get
B(M (gzm’ gzi)) = R[y - gzifl(x)] = R[y - gl(x) —C—C,— "'_Czifz] = R[y - gl(x)].

From eq. (17), we find

k

B(K (01 95)) =[B(M (9.1 92)) =R[y — g, (X)].

i=1
4. CONCLUSION

In this paper, we have described the algebra of polynomials bounded on some strips.
On the Euclidean space of dimension n+1, we show that the algebra bounded on the

generalized strip M.(9,,9,,....0,) is finitely generated by the polynomials
y—0,(X),....,y—g,(x) provided that c is a positive vector of R". On the plane R?, the
algebra bounded on the strip M (g,,9,) depends on the limit lim(g,(x) — g,(x)). The algebra

Is trivial if the limit is positive infinity; finitely generated by y—g,(x) if this limit is a
positive constant and equal to (y—g,(X))R[x, y]+R if this limit is zero. In addition, we also
gave a corollary of this algebra on the finite union of generalized strips.
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