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Abstract. Generally, friction/perturbation compensation is an important issue in high-precision 

motion control applications. In particular, when the system under control undergoes low-speed 

or reversal motions, the friction force and external perturbations will degrade motion accuracy. 

In this paper, we study analysis of perturbed frictional contact problems. Its shows how 

homotopy perturbation techniques and projection can be integrated in control-based approach 

to reanalyze the perturbed frictional contact problems. Thus, the perturbed non linear problem 

is decomposed into perturbed linear problems dedicated to each component in contact. Each 

solution of perturbed linear problems is approximated. A numerical application is performed to 

verify the efficiency and the robustness of the proposed method. The proposed method has 

been developed to be compatible within a context of multiple sampling (such as parametric 

analysis or design of experiments). The proposal relies on a control based method currently 

used in automation domain. A Fuzzy Logic Controller (FLC) is designed to link the normal 

gaps identified between the bodies and the normal contact pressures applied at the interface.  

Finally, a design of experiments is proposed to quantify the effects of input perturbations on 

output mechanical data. 

Keywords: Perturbe, frictional contact, Fuzzy Logic Controller, Homotopy Perturbation and 

Projection . 
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1. INTRODUCTION  

During the manufacturing of mechanical structures, it is not uncommon to observe some 

uncertainties resulting in product variability either on material properties (Young modulus, 

strain-stress law), on geometric characteristics (gaps, fillets and small geometries) and on 

interface and boundary conditions. These observed variabilities necessarily affect the static 

and dynamic behaviours of structures and more generally the component life and the global 

efficiency of the system. To significantly characterize experimental behaviour, it is so 

necessary to consider a family of components rather than only one specimen that can generate 

significant financial costs. Numerically, to take into account these uncertainties and tend to 

reliable and robust designs, a current industrial trend involves making multiple numerical 

simulations by performing sensitivity analyses, designs of experiments non-deterministic 

studies or even reliable and robust optimizations. 

There are studies that have allowed to develop a new way for solving a frictional contact 

problem by considering a Fuzzy Logic Control (FLCs) approach [1-6]. Practically, the normal 

and tangential (sticking) contact loads are iteratively calculated as a function of observed gaps 

thanks to two FLCs implemented in parallel. To update the positions of contact nodes at each 

iteration, reduced linear contact problems are solved. The reduction is performed by static 

modes of each structure in contact [7,8]. As highlighted, a current trend is to multiply the 

number of samplings and used advanced strategies (DOE, sensitivity analyses, non-

deterministic analyses or robust optimization) to tend to more robust and reliable designs 

[9,10]. In this context of multiple samplings, if perturbations are introduced on input 

parameters of the problem, the finite element matrices of the problem and so the equilibrium 

position and the contact data are necessarily modified. To maintain the computational time of 

these advanced approaches, it is necessary to integrate reduced order or reanalysis techniques 

[11,12].  

In this paper, as the contact problem has been rewritten as a function of static modes, we 

propose to investigate the reanalysis of these data as a function of the introduced perturbations. 

Thus, these modified displacements are approximated by considering homotopy perturbation 

method [11], which allows to develop the solutions of the nonlinear problem as a series 

expansion (in the present, the introduced perturbation is seen as a nonlinearity). The method 

employs a homotopy transform to generate a convergent series solution of mathematical 

problem [13]. Finally, the obtained high order displacements will be respectively introduced in 

a projection matrix to reduce the size of each linear problems to be solved and built the contact 

projection matrix 

Thus, first we summarizes the main equations of a nominal contact problem in a finite 

element context, the method used to solve the nonlinear problem and the definition of a 

modified reduced contact problem. In a context of multiple modifications, we presents the 

reanalysis of the modified projection matrix and more particularly the reanalysis of modified 

static modes by homotopy perturbation and projection techniques. To verify the efficiency of 

proposed method, a complete numerical application is presented. The results obtained for 

different classes of perturbations are confronted to those obtained using industrial code 

Abaqus in terms of precision and computational time. Finally, a Design of Experiments 

(DOE) is proposed to quantify the effects of input perturbations on output mechanical data.   
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2. PERTUBATIONS IN A STATIC FINITE ELEMENT CONTACT PROBLEM 

In a finite element context, the nominal equilibrium equation, which governs the static 

problem [13], is written as follows: 

(0) (0) (0) (0) (0) (0) (0)( ) ( ) exn t tK U F U F U F+ + =                                                         (1) 

where the upper script "(0)" defines the nominal or initial configuration and 
(0)K ), (0)U ), (0)

extF , 

(0) (0)( )nF U and (0) (0)( )tF U respectively represent the nominal stiffness matrix, the nominal nodal 

displacement vector, the nominal external load vector and the nominal normal and tangential 

contact loads. The size of the finite element problem is ndof. The problem studied is non-linear 

because the contact loads (0) (0)( )nF U and (0) (0)( )tF U depend directly on the unknown 

displacement (0)U of all bodies in contact. These two contact load vectors will be assembled by 

considering the local normal and tangential contact loads detected for each active contact pair 

of the finite element model. 

The Fuzzy Logic Controller for Contact (FL2C) method is an iterative method, which 

decomposes the nonlinear contact problem into a series of linear problems where the contact 

loads are considered as external loads. Thus, a correction of contact loads and displacements is 

realized at each step by using Fuzzy Logic Controllers (FLC) to link the observed gaps with 

contact loads [14]. The equilibrium equation (1) is rewritten as follows: 

  
(0) (0, 1) (0) (0, 1) (0, 1)

ex

k k k

t n tK U F F F+ + += + +                                                                 (2) 

where (0, 1)k

nF + and (0, 1)k

tF + represent the normal and tangential contact loads at the kth iteration 

relative to the observed normal and tangential gaps.Then, each contact load is calculated as 

follows: 

                                 

(0, 1) (0, ) (0, 1)

(0, 1) (0, )

(0, 1) (0, ) (0, 1)

(0, 1) (0, )

k k k
F F Fn n n

k k
F Fn n

k k k
F F Ft t t

k k
F Ft t





+ +
= + 

+
 = 

+ +
= + 

+
 = 

                                                      (3) 

where γ and β are respectively normal and tangential coefficients associated with the 

increment of normal and tangential loads and determined with FL2C 

3. REANALYSIS OF THE MODIFIED PROJECTION MATRIX 

First, the modified stiffness matrices K(m) of each component in contact can be 

decomposed as a function of the nominal stiffness matrices K(0) and perturbed parts ∆K [14], 

such as 
( ) (0)mK K K= +                                                                  (4) 

Secondly, the modified vectors of the modified projection matrix, namely modified static 

modes Γ(m) can be developed as a series of nominal vectors and different perturbed vectors 

such as: 
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                                1(n )( ) (0) 1 (1) 1....m n  =  +  + +                                                 (5) 

where n1 is the order of truncation of the development.  

The homotopy perturbation technique allows a non-linear problem to be expressed as a set 

of linear problems. In the present case, the perturbation included in the problem is seen as the 

non-linearity and an additional unknown parameter  is introduced to highlight this. Thus, the 

parameter  is positioned in equation 4 alongside the perturbation or high order quantities. At 

the end of the formulation, parameter  will be established to practically evaluate the perturbed 

solutions. The calculation of modified static modes and modified eigenmodes are detailed in 

the next subsection. The linear system of equations associated with the modified static modes 

is defined by  

                                ( ) ( )m m

IK F =                                                                     (6) 

where FI is a vector of unitary load 

Introducing equation 4 and 5 into equation 6, one obtains:  

   (0) (0) 1 (1) 1 (n1)( )( .... )n

IK K F  +   +  + +  =                               (7) 

The nominal solution Γ(0) is calculated using a standard algorithm after decomposing the 

nominal stiffness matrix K(0).  

                           (0) (0)

IK F =                                                                       (8) 

The perturbed vector Γ(i) is calculated by identifying different order terms of parameter  
(0) ( ) ( 1)i iK K − = −    with i = 1….n1                                              (9) 

All calculated perturbed vectors Γ(i) depend on the same matrix, K(0), which will be 

decomposed only once during the process, whatever the number of perturbed problems. To 

ensure the quality of the approximation Γ(m), a projection of the equilibrium  onto a subspace 

spanned by the columns of a rectangular projection basis ( )mT  is considered. The projection 

basic ( )mT is built by using solution Γ(0) of the initial problem and perturbed solution Γ(i), as 

written: 

               ( ) (0) (1) ( ) 1.... ...m i nT
 =                                                               (10) 

This projection basis, whose size is 1( ( 1))dof stan n n   −  is orthonormalized. The reduced 

modified static problem is thus defined as follows: 

             ( ) ( ) ( ) ( ) ( )T Tm m m m m

R IT K T T F   =                                                      (11) 

              ( ) ( ) ( )m m m

RT =                                                                 (12) 

Finally, the results Γ(m) of equation 12 are used to update the projection matrix T(m). The 

reanalysis method, based on Homotopy Perturbation and Projection, is named HPP method in 

the rest of the paper. The next section presents the coupling of the reanalysis and the contact 

methods. 
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4. PROPOSED HPP-FL2C METHOD 

The proposed method, used to reanalyse a perturbed frictional contact problem, relies on 

the coupling of the HPP method and on the FL2C method. To facilitate understanding, a 

flowchart, summarizing the different steps and the principal equations, is presented in figure 1 

 

Figure 1. Flowchart of the proposed HPP-FL2C.  

First, when the nominal finite element matrices of each structure of the system have been 

assembled, it is necessary to calculate the nominal static modes of each structure with only 

their own boundary conditions. These evaluations are performed using classical methods. The 

nominal solutions of the contact problem can be solved using, for example, the FL2C method. 

Secondly, for each modified problem, the modified projection matrix is built with a reanalysis 

method. Thirdly, the reduced modified problem is built by considering a projection of 

equilibrium equation on the modified projection matrix. Finally, the reduced contact problem 

is iteratively solved using the FL2C method. In summary, to validate the proposed 

developments step by step, four numerical methods will be considered in the following 

section dedicated to numerical application, and will be labelled as follows: Abaqus for 

calculations performed on Abaqus software (node to surface algorithm and a minimal 

increment fixed at 1:10-5 to guarantee the convergence). Full-FL2C for calculations performed 

using the control approach for the contact problem with full finite element matrices size. Proj-

FL2C for calculations performed using the control approach for the reduced contact problem. 

HPP-FL2C for calculations performed using the control approach and reanalysis of the 

projection matrix. 



Transport and Communications Science Journal, Vol. 73, Issue 1 (01/2022), 61-74 

66 

5. NUMERICAL APPLICATIONS FOR FRICTIONAL CONTACT PROBLEM WITH 

PERTUBATIONS 

5.1. Decription of the numerical model 

A static frictional contact problem of two 2D semicircular steel rings is considered in 

figure 2. Each ring is defined by an outer radius of 100 mm and an inner radius of 95 mm. The 

initial position of the upper ring’s center is fixed at 140 mm to the left and 190 mm up from the 

center of the lower ring. The finite element discretization for each ring includes 640 

quadrinodal plane stress elements and 729 nodes per ring, corresponding to 8 divisions of the 

radius and 80 sectors.  

 

                    Figure 2. Description of the system studied composed of two elastic rings in contact. 

 

       The elastic material properties of the two rings are fixed at 210 GPa for Young’s moduli 

and 0.3 for Poisson’s ratios. Fixed boundary conditions are applied to the GH segment along 

the x and the y-axes, AB, CD and EF segments along the y-axis only. The CD segment is 

controlled in displacement along the x-axis up to 240 mm. Twenty-four steps are performed for 

this problem, so an horizontal displacement of 10 mm is applied to CD at each step. At the 

interface, a friction coefficient is set at 0.5. In the following analyses, the evolution of the sum 

of normal and tangential contact loads as well as the x-axis displacements of nodes A and E 

will be systematically studied for the different steps. 

5.2. Nominal contact problem validation 

The nominal results obtained with the Full-FL2C method are compared to those calculated 

with Abaqus. Figure 3 first presents the evolution of the x-axis displacements of nodes A, E. 
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  Figure 3. Comparison of x-axis displacement between Abaqus and Full-FL2C. (a) Node A; (b) node E. 

The global evolution of displacements calculated with the Full-FL2C method is very close 

to that obtained with Abaqus. The maximum error is inferior to 1.5% and is found for node E 

around an imposed displacement of 110 mm. On the contrary, for lower and higher imposed 

displacements, errors are much lower as they do not exceed 1%. Besides, the maximal 

difference for the displacement following the x-axis of node A is in the order of 10-4m for 

imposed displacement at 110 mm. 

Now, the evolution of the sums of normal and tangential contact loads as a function of 

imposed displacements in figure 4 is assumed.  

 
  Figure 4. Comparison of the sum of contact loads between Abaqus and Full-FL2C: (a) Surm of 

normal contact loads; (b) Tangential contact loads 
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The results obtained are rather interesting because they are globally close to those given 

by the Abaqus solutions. The maximal errors for both normal and tangential loads are inferior 

to 8% and are detected only for imposed displacements around 110mm and 120mm. However, 

these errors have a low effect on the global kinematic behavior concerning the x-axis 

displacements of nodes A and E previously presented. In the present case, the mean normal 

gap for the Full-FL2C method after equilibrium is equal to 1µm. These differences are mainly 

linked to the distribution of contact loads between the two algorithms. 

5.3. Nominal reduced contact problem validation 

This section is dedicated to validation of the nominal reduced problem and the use of a 

projection matrix to decrease the size of the contact problem and therefore the computational 

time. A discussion is offered on the number of modal and static modes which must be kept to 

achieve a good approximation of mechanical output data. Figures 5 and 6 present the 

evolution of x-axis displacements and the sum of contact loads for Full-FL2C and Proj-FL2C 

as a function of the number of modes in the projection matrix. Three cases are studied:10 

eigenmodes for each elastic ring and no static modes (case 1); 10 eigenmodes for each elastic 

ring and 112 static modes (case 2); 112 static modes (case 3).  

One can observe that it is necessary to consider the static modes of each ring calculated 

along both the x-axis and the y-axis at the contact interface. The errors are very close to those 

obtained with the Full-FL2C method. The maximal error of contact loads (normal and 

tangential) is in the order of 10-3%, while the maximal difference for the x-axis displacement 

of node A and E is in the order of 10-4 mm. In this case, considering modal basis does not 

improve the results to any greater degree. On the other hand, a lack of static modes clearly 

deteriorates the solutions 

                 
Figure 5. Comparison of x-axis displacement between Full-FL2C and Proj-FL2C for different   

projection matrices. (a;b;c) Node A; (d;e;f) node E; (a;d) case 1; (b;e) case 2; (c;f) case 3   
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Figure 6. Comparison of the sum of contact loads between Full-FL2C and Proj-FL2C for 

different projection matrices. (a;b;c) Sum of normal contact loads; (d;e;f) sum oof tangential 

contact loads;(a;d) case 1; (b;e) case 2; (c;f) case 3 

5.4. Perturbed reduced contact problem 

The first order HPP-FL2C method is considered to reanalyze the projection matrix of the 

perturbed reduced contact problem. The two kinds of perturbations will be tested as 

previously, namely Young’s moduli, respectively equal to 215 GPa and 205 GPa for the lower 

and upper rings, with an inner radius of 96 mm for the lower ring and 94 mm for the upper 

ring. The friction coefficient is fixed at its nominal value, namely 0.5.  Figures 7 and 8 present 

a comparison of results between Abaqus and HPP-FL2C by considering firstly, the x-axis 

displacements for node A and E and secondly, the sums of normal and tangential contact 

loads. The reanalyzed x-axis displacements calculated with the HPP-FL2C method are very 

closeto those obtained with Abaqus, whatever the perturbation. The mean errors are inferior to 

1% for both nodes A and E. Moreover, the evolution of contact loads is globally well 

captured. For the totality of the simulation, the rate of error reaches a maximum of 10%. Thus, 

this study shows the efficiency of the HPP-FL2C method to calculate with precision perturbed 

mechanical output quantities such as displacements and contact loads. 



Transport and Communications Science Journal, Vol. 73, Issue 1 (01/2022), 61-74 

70 

                 

Figure 7. Comparison of x-axis displacements between Abaqus and HPP-FL2C for different 

categories of perturbations. (a;b) Material perturbation; (c;d) geometric perturbation; (a;c) node A; 

(b;d) node E 

 

Figure 8. Comparison of contact loads between Abaqus and HPP-FL2C for different categories of 

perturbations. (a;b) Material perturbation; (c;d) geometric perturbation; (a;c) normal contact loads; 

(b;d) tangential contact loads. 
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Now, figure 9 presents the evolution of computational time for one reanalysis as a function 

of the finite element model size. Three methods, namely Abaqus, Full-FL2C and HPP-FL2C, 

are considered for this comparison. The number of degrees of freedom (dof) of the finite 

element model is successively fixed at 120, 400, 1400, 5500 and 21000 dofs for each ring. 

                         

Figure 9. Comparison of computational time of Abaqus, Full-FL2C and HPP-FL2C methods 

as a function of finite element model size 

The computational time for Full-FL2C and HPP-FL2C is always less than Abaqus, 

regardless of the model size. When the model size increases, the computational gain between 

Abaqus and HPP-FL2C gradually increases. For the largest model, the computational gain 

factor between Abaqus and Full-FL2C can reach 75% and almost 50% between Full-FL2C and 

HPP-FL2C. This section highlights the advantage of coupling a reanalysis technique and a 

control method to solve a perturbed contact problem. 

6. PARAMETRIC ANALYSIS BY DOE (DESIGN OF EXPERIMENTS) 

Considering the previous observations in terms of precision and computational time to 

reanalyze a perturbed contact problem, the last test examines the use of the HPP-FL2C method 

in a DOE. A full factorial DOE considering both an interface parameter (friction coefficient), a 

material parameter (Young’s modulus of each ring) and geometric parameter (inner radius of 

each ring). The values of each category of parameters can vary respectively between 0.4 to 0.6 

(±20%), 205 GPa to 215 GPa (±2.4%) and 94 mm to 96 mm (±1.05%). Figures 10 and 11 

present the effects of input perturbations on x-axis displacements and contact loads calculated 

with the Abaqus and HPP-FL2C methods. First, the minimal and maximal evolutions of 

behaviours of output data are very close between the Abaqus and HPP-FL2C methods, which 

again confirms the precision of the proposed HPP method. We can note the significant effect 

of input perturbation on the x-axis displacement for node E. In fact, an output variation of 

±90% is observed for node E against ±5% for node A. This study shows that moderate input 

perturbations can generate large variations in the output. The same significant evolution of 

behaviour is observed for the contact loads. Finally, in terms of computational time, this study 

was performed in approximately twelve hours using Abaqus compared with one hour using the 

HPP-FL2C method with Matlab, representing a computational gain factor of 12. 
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      Figure 10. Comparison of DOE results obtained with Abaqus and HPP-FL2C for displacement, 

(a;b)Abaqus; (c;d) HPP-FL2C(a;c) x-axis displacement of node A; (b;d) x-axis displacement of node E. 

 
Figure 11. Comparison of DOE results obtained with Abaqus and HPP-FL2C of contact loads.  

(a;b) Abaqus; (c;d) HPP-FL2C; (a;c) normal contact loads; (b;d) tangential contact loads 
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7. CONCLUSION 

This paper has presented a numerical strategy to reanalyze a modified static frictional 

contact problem. This one relies on the coupling of the FL2C method useful to the solving of 

the contact problem and the HPP method used for the reanalysis of coupling contact projection 

matrix. Indeed, in the context of multiple samplings, the input parameters are perturbed and 

affect the finite element matrices and so the static modes (which are the key elements of the 

contact projection matrix). Thus, we have proposed to reanalyse the modified static modes 

with a homotopy development and a new projection step. The different steps of the HPP-FL2C 

method have been developed. 

Different tests have been performed to evaluate both the precision and the performance of 

the proposed HPP-FL2C method. We have highlighted that HPP-FL2C is a convenient strategy 

when parametric study such as DOE is considered. Indeed, with a first order of truncation, it is 

possible to obtain a level of precision compatible with advanced direct simulations. Moreover, 

an important gain of computational time can be obtained whichever category of variable 

parameter is involved namely interface, material or topology. We have shown that moderate 

input perturbations can generate large variations on the output contact data and both local and 

global modification of behaviours. Now, considering HPP-FL2C method, it is now possible to 

investigate the reanalysis of the equilibrium position of frictional induced vibration problems 
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