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Abstract. Contact mechanics is a topic that performs the investigation of 

the deformation of solids that touch each other at one or more points. A principal distinction 

in contact mechanics is between stresses acting perpendicular to the contacting bodies' 

surfaces and stresses acting tangentially between the surfaces. This study focuses mainly on 

the normal stresses that are caused by applied forces. As a case study, the present work aims 

at investigating the bi-dimensional contact mechanics of wavy cosinusoidal anisotropic finite 

planes. To achieve this objective, results on the displacement and stress component are first 

calculated with the help of the Lekhnitskii formalism. Then, with the application of normal 

pressure at plane surface and by applying boundary conditions at depth h of solid we obtain 

solution for the contact pressure in closed form. In case of infinite anisotropic plane where 

the depth h tends to infinite, by using results obtained with finite h we derive the analytical 

solution for vertical displacement at the surface. As an illustration, behaviour of a monoclinic 

material under consinusoidal pressure is analyzed.  
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1. INTRODUCTION  

In physics and mechanics of composite materials, most investigations dedicated to 

determining the behavior of contact mechanic often adopt the hypothesis that the surfaces are 

smooth. However, in many practical situations, the assumption of smooth surfaces is too 

idealized and the consideration of rough surfaces is unavoidable. Consequently, the real contact 

problem of two surfaces can be described by several stages: the surfaces approach and firstly 

touch each other at the peaks of their asperities, the asperities are then flattened and the contact 

areas spread as the load increases and finally the full contact status is reached at sufficiently 

large load. In order to understand the contacts at microscale throughout different stages, the 

roughness model plays a very important part.  

Contact mechanics is the study of the deformation of solids that touch each other at one or 

more points [1-3]. Principles of contacts mechanics are implemented towards applications such 

as locomotive wheel-rail contact, coupling devices, braking systems, tires, bearings, 

combustion engines, mechanical linkages, gasket seals, metalworking, metal forming, 

ultrasonic welding, electrical contacts, and many others. And its application can extend in micro 

and nanotechnology [2, 8]. In fact, the problem of con- tact between the corrugated surface 

plays an important role. However, most of the previously mentioned works is limited to 

isotropic materials [9-11] wherea a large number of materials in nature exhibiting properties 

that vary with direction, this is the case of anisotropy. In this work, we aim investigate elastic 

problem with a cosinusoidal pression placed at surface of a finite solid made of a homogeneous 

anisotropic elastic material using the method of complex variables [4-7]. This paper is 

organized as follows: Section 2 describes the method of complex variable based on the 

Lekhnitskii formalism. In Section 3 and 4, we show how to obtain displacement and stress field 

from a given periodical traction at surface in case of finite and infinite anisotropic plane from a 

given periodical traction at surface. Numerical examples of analytical results obtained by 

method of complex variable are illustrated in section 5. Finally, a few concluding remarks are 

shown in Section 6  

2. THE LEKHNITSKII FORMALISM 

We consider a solid which consists of a linearly elastic anisotropic homogeneous material 

and under- goes plane strains in the plane xOy. The material is considered monoclinic with 

symmetry plane as deformation plane. The corresponding stress-strain relation of the material 

is given by the Hooke law  

{
 
 

 
 
𝜎𝑥𝑥 = 𝐿11𝜀𝑥𝑥 + 𝐿12𝜀𝑦𝑦 + 2𝐿16𝜀𝑥𝑦,

𝜎𝑦𝑦 = 𝐿12𝜀𝑥𝑥 + 𝐿22𝜀𝑦𝑦 + 2𝐿26𝜀𝑥𝑦,

𝜎𝑥𝑦 = 𝐿16𝜀𝑥𝑥 + 𝐿26𝜀𝑦𝑦 + 2𝐿66𝜀𝑥𝑦,

𝜎𝑧𝑧 = 𝐿13𝜀𝑥𝑥 + 𝐿23𝜀𝑦𝑦 + 2𝐿66𝜀𝑥𝑦,

𝜎𝑦𝑧 = 0,   𝜎𝑥𝑧 = 0.

                                           (1) 

where𝜎𝑥𝑥, 𝜎𝑦𝑦 , 𝜎𝑥𝑦and 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑥𝑦 are the stress and strain components, Lij (i, j = 1, 2, 3, 

6) presents the reduced elastic stiffness associated to a plane strain problem [6]. By resolving 

Eq.(1) we can deduce the stress-strain relation as follows:  
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{

𝜀𝑥𝑥 = 𝑆11𝜎𝑥𝑥 + 𝑆12𝜎𝑦𝑦 + 2𝑆16𝜎𝑥𝑦,

𝜀𝑦𝑦 = 𝑆12𝜎𝑥𝑥 + 𝑆22𝜎𝑦𝑦 + 2𝑆26𝜎𝑥𝑦,

2𝜀𝑥𝑦 = 𝑆16𝜎𝑥𝑥 + 𝑆26𝜎𝑦𝑦 + 2𝑆66𝜎𝑥𝑦,
                                        (2) 

 

where Sij stand for the reduced elastic compliances associated to a plane strain problem 

[12] are in function of Lij . In the absence of body forces, for plane strain, the equilibrium 

equations is written as:  

{

𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜎𝑥𝑦

𝜕𝑦
= 0,

𝜕𝜎𝑥𝑦

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
= 0.

                                                            (3) 

It is observed that these equations will be identically satisfied by choosing a representation  

𝜎𝑥𝑥 =
𝜕2𝜙

𝜕𝑦2
, 𝜎𝑦𝑦 =

𝜕2𝜙

𝜕𝑥2
 , 𝜎𝑥𝑦 = −

𝜕2𝜙

𝜕𝑥𝜕𝑦
.                                       (4) 

where ϕ = ϕ(x, y) is an arbitrary form called the Airy stress function [4, 6]. With regard 

to strain compatibility for plane strain, the Saint-Venant relations reduce to  

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+
𝜕2𝜀𝑦𝑦

𝜕𝑥2
= 2

𝜕2𝜀𝑥𝑦

𝜕𝑥𝜕𝑦
.                                                        (5) 

By substituting Eqs. (2, 4) into Eq. (5) we obtain: 

𝑆22
𝜕4𝜙

𝜕𝑥4
− 2𝑆66

𝜕4𝜙

𝜕𝑥3𝜕𝑦
+ (2𝑆12 + 𝑆66)

𝜕4𝜙

𝜕𝑥2𝜕𝑦2
− 2𝑆16

𝜕4𝜙

𝜕𝑥𝜕𝑦3
+ 𝑆11

𝜕4𝜙

𝜕𝑦4
= 0   (6) 

According to the formalism of Lekhnitskii [4 ,6], the stress and displacement fields in the 

anisotropic solid are determined by two complex potential functions 𝜙1(𝑧1) and 𝜙2(𝑧2) of 

complex variables z1 and z2:  

𝑧1 = 𝑥 + 𝜇1𝑦, 𝑧2 = 𝑥 + 𝜇2𝑦.                                                  (7) 

In these expressions, the constants  𝜇1 and 𝜇2 are two complex roots of the characteristic 

equation 

𝑆11𝜇
4 − 2𝑆16𝜇

3 + (2𝑆12 + 𝑆66)𝜇
2 − 2𝑆26𝜇 + 𝑆22 = 0.                          (8) 

Since Eq.(8) is of order 4 with real coefficients, it has two pairs of conjugate roots. With 

no loss of generality, we choose 𝜇1 and 𝜇2 to be the two roots having positive imaginary (I) 

parts 

{
𝐼(𝜇1) > 0,

𝐼(𝜇2) > 0.
                                                                (9) 

To within a rigid displacement, the displacement components, u along x and v along y, are 

provided by 

{
𝑢(𝑥, 𝑦) = 2𝑅[𝑝1𝜙1(𝑧1) + 𝑝2𝜙2(𝑧2)],

𝑣(𝑥, 𝑦) = 2𝑅[𝑞1𝜙1(𝑧1) + 𝑞2𝜙2(𝑧2)].
                              (10) 

where  
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{
𝑝𝑖 = 𝑆11𝜇𝑖

2 − 𝑆16𝜇𝑖 + 𝑆12,

𝑞𝑖 = 𝑆12𝜇𝑖 − 𝑆26 +
𝑆22

𝜇𝑖
.

                                          (11) 

At the same time, the stress components 𝜎𝑥𝑥, 𝜎𝑦𝑦 𝑎𝑛𝑑 𝜎𝑥𝑦 are delivered by 

{

𝜎𝑥𝑥(𝑥, 𝑦) = 2𝑅[𝜇1
2𝜙1

′ (𝑧1) + 𝜇2
2𝜙2

′ (𝑧2)],

𝜎𝑦𝑦(𝑥, 𝑦) = 2𝑅[𝜙1
′ (𝑧1) + 𝜙2

′ (𝑧2)]         ,

𝜎𝑥𝑦(𝑥, 𝑦) = −2𝑅[𝜇1𝜙1
′ (𝑧1) + 𝜇2𝜙2

′ (𝑧2)].

                          (12) 

where 𝜙1
′  and 𝜙2

′  are derivatives of 𝜙1 and 𝜙2 respectively, and R stands for the real part 

of function. 

3. PERIODICAL TRACTION ON A FINITES ANISOTROPIC PLANE 

Consider an anisotropic solid where thickness is h. At the surface of a finite anisotropic 

plane a cosinusoidal normal pressure p(x) of wave length and amplitude p, namely 

𝑝(𝑥) = 𝑝∗𝑐𝑜𝑠 (
2𝜋𝑥

𝜆
),                                                      (13) 

is applied. 

 

 

Figure 1. Cosinusoidal normal pressure applied at surface of solid and boundary conditions 

At depth h, we block the vertical displacement v (x, h) = 0, and the solid can move horizontally 

without friction 𝜎𝑥𝑦(𝑥, 𝑦) = 0. Accounting for the boundary condition Eq. (13), we 

propose the following complex potential functions 

{
𝜙1(𝑧1) =

𝐴1𝜆𝑝
∗

4𝜋𝑖
𝑒𝑥𝑝 (

2𝑖𝜋𝑧1

𝜆
) +

𝐵1𝜆𝑝
∗

4𝜋𝑖
𝑒𝑥𝑝 (

−2𝑖𝜋𝑧1

𝜆
)

𝜙2(𝑧2) =
𝐴2𝜆𝑝

∗

4𝜋𝑖
𝑒𝑥𝑝 (

2𝑖𝜋𝑧2

𝜆
) +

𝐵2𝜆𝑝
∗

4𝜋𝑖
𝑒𝑥𝑝 (

−2𝑖𝜋𝑧2

𝜆
)
,                                       (14) 

where Aj, Bj, j, qj (j = 1, 2) are complex numbers such as 

𝐴𝑗 = 𝑎𝑗 + 𝑖𝛼𝑗, 𝐵𝑗 = 𝑏𝑗 + 𝑖𝛽𝑗, 𝜇𝑗 = 𝑚𝑗 + 𝑖𝑛𝑗, 𝑞𝑗 = 𝑘𝑗 + 𝑖𝑙𝑗                                 (15) 

with 𝑎𝑗, 𝑏𝑗, 𝛼𝑗, 𝛽𝑗, 𝑚𝑗, 𝑛𝑗, 𝑘𝑗, 𝑙𝑗 denotes real numbers, i is equal to √−1. 
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By substituting Eq. (15) into Eq. (10), solution of displacement field of half plan are expressed by: 

𝑢(𝑥,𝑦)=𝑅[

𝑝1𝐴1𝜆𝑝
∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧1
𝜆

)+
𝑝1𝐵1𝜆𝑝

∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧1
𝜆

)

+
𝑝2𝐴2𝜆𝑝

∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧2
𝜆

)+
𝑝2𝐵2𝜆𝑝

∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧2
𝜆

)
]

𝑣(𝑥,𝑦)=𝑅[

𝑞1𝐴1𝜆𝑝
∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧1
𝜆

)+
𝑞1𝐵1𝜆𝑝

∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧1
𝜆

)

+
𝑞2𝐴2𝜆𝑝

∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧2
𝜆

)+
𝑞2𝐵2𝜆𝑝

∗

2𝜋𝑖
𝑒𝑥𝑝(

2𝑖𝜋𝑧2
𝜆

)
]

,                                         (16) 

and by substituting Eq. (15)into Eq. (12) solution for stress fields are defined by  

𝜎𝑥𝑥(𝑥, 𝑦) = 𝑝
∗ℜ[𝜇1

2𝐴1𝑒𝑥𝑝 (
2𝑖𝜋𝑧1

𝜆
) − 𝜇1

2𝐵1𝑒𝑥𝑝 (
−2𝑖𝜋𝑧1

𝜆
) + 𝜇2

2𝐴2𝑒𝑥𝑝 (
2𝑖𝜋𝑧2

𝜆
) − 𝜇2

2𝐵2𝑒𝑥𝑝 (
2𝑖𝜋𝑧2

𝜆
)]

𝜎𝑦𝑦(𝑥, 𝑦) = 𝑝
∗ℜ[𝐴1𝑒𝑥𝑝 (

2𝑖𝜋𝑧1

𝜆
) − 𝐵1𝑒𝑥𝑝 (

−2𝑖𝜋𝑧1

𝜆
) + 𝐴2𝑒𝑥𝑝 (

2𝑖𝜋𝑧2

𝜆
) − 𝐵2𝑒𝑥𝑝 (

2𝑖𝜋𝑧2

𝜆
)]                  

𝜎𝑥𝑦(𝑥, 𝑦) = −𝑝
∗ℜ[𝜇1𝐴1𝑒𝑥𝑝 (

2𝑖𝜋𝑧1

𝜆
) − 𝜇1𝐵1𝑒𝑥𝑝 (

−2𝑖𝜋𝑧1

𝜆
) + 𝜇2𝐴2𝑒𝑥𝑝 (

2𝑖𝜋𝑧2

𝜆
) − 𝜇2𝐵2𝑒𝑥𝑝 (

2𝑖𝜋𝑧2

𝜆
)]

. 

(17) 

Displacement and stress fields solution of solid are defined by determining four unknowns 

A1, A2, B1, B2. In the following paragraphs we consider two boundary conduction problems 

applied to solid:  

• At the plane surface y  = 0 (z1 = z2 = x):  

𝑇 = [
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑦𝑥 𝜎𝑦𝑦

] [
0
1
] = [

0

𝑝∗𝑐𝑜𝑠 (
2𝜋𝑥

𝜆
)]                          (18) 

• At depth y = h: 

{
𝑣(𝑥, ℎ) = 0,

𝑡𝑥 = 𝜎𝑥𝑦(𝑥, ℎ) = 0.
                                       (19) 

by substituting Eqs. (16, 17) in boundary equations Eqs. (18, 19) and requiring the real and 

imaginary part of equations to be equal to zero we obtain a system of eight equations with eight 

unknows a1, a2, b1, b2, 1, 2, 1, 2. By solving this system of equations, we deduce eight 

unknows which are components of unknows complex A1, A2, B1, B2. 

By replacing solution of 𝜙1(𝑧1)  and 𝜙2(𝑧2)  in Eq. (162) derive the expression of vertical 

displacement at the surface: 

𝑣(𝑥, 0) = 2ℜ[𝑞
1
𝜙
1
(𝑥) + 𝑞

2
𝜙
2
(𝑥)] =

𝜆𝑝∗

2𝜋
[𝐻𝑐𝑜𝑠 (

2𝜋𝑥

𝜆
) + 𝐾𝑠𝑖𝑛 (

2𝜋𝑥

𝜆
)]  .           (20) 

where H =I (A1 +A2 +B1 + B2) and K = ℜ (A1 + A2 − B1 − B2). It is interesting to remark 

that a harmonic surface traction generates a harmonic surface displacement of the same 

wavelength. But a phase shift occurs due to the sinus term in the right-hand side of Eq. (20). 

This result, which seems been reported in the literature [8] for case of anisotropic half plane, 

and is in contrast to what happens in the case where the material forming the half plane is 

isotropic [1]. The phase shift disappears if and only if K = 0.  

4. PERIODICAL TRACTION ON A INFINITE ANISOTROPIC PLANE 

In case where y = h tends to , the complex potential functions presented by Eqs. (14) are 

reduced to: 



Transport and Communications Science Journal, Vol. 73, Issue 1 (01/2022), 31-39 

36 

ϕ1(z1) =
A1λp

∗

4πi
exp (

2iπz1

λ
) ,

ϕ2(z2) =
A2λp

∗

4πi
exp (

2iπz2

λ
) .

                                        (21) 

 

When a normal consinusoidal pressure proposed by Eq. (13) is applied at surface (y = 0), by 

substituting Eq. (21) into Eq. (12) we have: 

σyy(x, 0) = p
∗ [ℜ(A1 + A2)cos (

2πx

λ
) − I(A1 + A2)sin (

2πx

λ
)],      

           σxy(x, 0) = −p
∗ [ℜ(A1μ1 + A2μ2)cos (

2πx

λ
) − I(A1μ1 + A2μ2)sin (

2πx

λ
)]
.   (22) 

Boundary conditions at surface requiring that: 

{ 
 σxy(x, 0) = 0,

σyy(x, 0) = p∗cos (
2πx

λ
) .

                            (23) 

By solving the system of equations Eqs. (23) yields: 

A1 =
μ2

μ2−μ1
,   A2 =

μ2

μ2−μ1
.                           (24) 

Now we are interesting to determine the vertical displacement at surface. Introducing Eqs. (21) 

together with (24) into Eq. (16) gives the vertical displacement at the surface 

v(x) = v(x, 0) =
λp∗

2π
[H1cos (

2πx

λ
) + K1sin (

2πx

λ
)],                 (25) 

with 

 H1 = 𝐼 [
𝑞1𝜇2

𝜇2−𝜇1
+

𝑞2𝜇1

𝜇1−𝜇2
] , K1 = ℜ [

𝑞1𝜇2

𝜇2−𝜇1
+

𝑞2𝜇1

𝜇1−𝜇2
].                         (26) 

by inserting Eq. (11) into Eq. (262), it derive the explicit formula of K1: 

𝐾1 = ℜ{
𝜇1𝜇2

𝜇2−𝜇1
[𝑆22 (

1

𝜇1
2 −

1

𝜇2
2) − 𝑆26 (

1

𝜇1
−

1

𝜇2
)]} = 𝑆22ℜ [

1

𝜇1
+

1

𝜇2
] − 𝑆26.     (27) 

On the other hand, the polynomial equation Eq. (8) have four complex solution 𝜇1, 𝜇2, 𝜇3, 𝜇4 

and according to Sadd [6] between them there are relations: 

{
  
 

  
 𝜇1𝜇2𝜇3𝜇4 =

𝑆22

𝑆11
,

𝜇1𝜇2𝜇3 + 𝜇2𝜇3𝜇4 + 𝜇1𝜇3𝜇4 + 𝜇1𝜇2𝜇4 = 2
𝑆26

𝑆11
,

𝜇1𝜇2 + 𝜇2𝜇3 + 𝜇3𝜇4 + 𝜇4𝜇1 + 𝜇1𝜇3 + 𝜇2𝜇4 =
2𝑆12+2𝑆26

𝑆11
,

𝜇1 + 𝜇2 + 𝜇3 + 𝜇4 = 2
𝑆16

𝑆11
.

                 (28) 

By dividing Eq (281) by Eq (282) we get 
1

𝜇1
+

1

𝜇2
+

1

𝜇3
+

1

𝜇4
= 2

𝑆26

𝑆22
 ,                                     (29) 

which is equivalent to 
1

𝜇1
+

1

𝜇2
+

1

𝜇1̅̅̅̅
+

1

𝜇2̅̅̅̅
= 2

𝑆26

𝑆22
 ,                                         (30) 

By taking the real value of two sides of Eq. (30) we obtain: 

ℜ(
1

𝜇1
+

1

𝜇2
) =

𝑆26

𝑆22
                                                 (31) 

Replacing Eq. (31) into Eq. (27) we find that K1 = 0, therefore 
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𝑣(𝑥, 0) =
𝜆p∗

2𝜋
Hcos (

2𝜋𝑥

𝜆
).                                         (32) 

By comparing Eqs. (32) (13) it is interesting to emphasized that , if we apply a cosinusoidal 

surface traction at a surface of an infinite solid, it generates a periodic vertical displacement of 

the same wavelength and same phase as the pressure applied regardless of the anisotropy of the 

solid.  

5. NUMERICAL EXAMPLES 

To illustrate the analytical results presented above, we consider a monoclinic material 

NaAlSiO3 whose the elastic constants in their plane of symmetry are given [13]  𝐋 =

[
18.6 7.1 1.0
7.1 23.4 2.1
1.0 2.1 5.1

] 1011𝑀𝑃𝑎. Variations in the values of normalized stress components σxy (x 

= 0, y) , σyy (x = 0, y) with respect to the amplitude p∗, and variation in the value of normalized 

displacement u (x = 0, y), v (x = 0, y) with respect to wavelength λ, versus the value of fraction 
𝑦

ℎ
  are plotted for different values of the ratio 

ℎ

𝜆
 in Fig 2 and Fig 3 respectively.  

 
Figure 2. Variation of 

𝜎𝛼𝛽

𝑝∗
 versus 

𝑦

ℎ
 with different ratios 

ℎ

𝜆
. 
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By considering the Fig 2.a, we contaste that with value of fraction 
ℎ

𝜆
 less than 0.4 the absolute 

maximum values of σxy are in negative zone, while if 
ℎ

𝜆
 is more than 0.7 then σxy has two 

maximum values at positive and negative zone. With bigger value of 
ℎ

𝜆
 , σxy tends to zero at 

smaller value of  
𝑦

ℎ
. Fig 2b demonstrate that value of σyy decrease with increase of depth y, and 

with bigger value of 
ℎ

𝜆
 , σyy tends to zero at smaller value of 

𝑦

ℎ
. 

 

Figure 3. Variation of normalized displacement with respect to  versus 
𝑦

ℎ
 with different ratios 

ℎ

𝜆
. 

Fig 3a proves that the increased value of  
ℎ

𝜆
 lead to decrease in uxy at smaller value 

𝑦

ℎ
. And 

uxy tends to zero at depth y = 0.5h. As the value 
ℎ

𝜆
 increases, vxy tend to zero at smaller value y 
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are illustrated in Fig 3b. Difference from other values, if 
ℎ

𝜆
= 0.1 𝑜𝑟 0.2, vxy increases linearly 

with the value of 
𝑦

ℎ
. 

6. CONCLUSION 

The present work analyzes the two-dimensional elastic problems of anisotropic half planes 

supported a cosinusoidal traction applied at surface. The micromechanical approach used in the 

paper is method based on complex variable proposed by Sadd by applying the Lekhnitskii 

formalism. By using this method, we can determine the local solutions of displacement and then 

strain or stress fields of solid. Analytical results obtained in this paper show that: regardless of 

the anisotropy of the solid if we apply a cosinusoidal traction at the surface, it yields a harmonic 

displacement at same period with a dephase at surface in case of finite solid, but and in special 

case of infinite solid it generates a harmonic displacement at same period and phase shift is 

vanishing at infinity.  
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