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Abstract. The inelastic buckling resistances of wide flange beams are strongly influenced by 

residual stresses and initial imperfections. However, the resistances as evaluated from simple 

solutions presented in several popular design specifications are found to be considerably 

different. The present study thus develop a numerical solution in ABAQUS software to 

investigate the inelastic buckling moment resistances of rolled steel beams with compact 

sections and subjected to the effects of residual stresses and initial imperfections. The residual 

stresses are taken as provided in AISC, CSA S16, EC 3 specifications, while the initial 

imperfections are taken as the first lateral-torsional buckling mode with a magnitude limited 

in AISC, CSA specifications. Through comparisons between the specifications and the 

numerical solutions, one observes a significant difference between the moment resistances 

predicted by the specifications, in which the AISC predicts the highest values, while the EC 3 

predicts the lowest moments. The moment resistances based on the present numerical models 

lie between the EC 3 and CSA solutions and they are relatively close to EC 3 solutions. 

Effects of load height positions on the inelastic buckling moment resistances are significant, 

as investigated in the present study. 

Keywords: inelastic buckling, moment resistance, load height position, residual stresses, 

initial imperfection, buckling moment comparison 

© 2022 University of Transport and Communications  

1. INTRODUCTION 

In the design of steel members for flexure, factored moment resistances are determined 

based on different design equations depending on the unbraced length of the members (e.g., 
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AISC [1], CSA S16 [2]). The moment resistances are controlled by a fully plasticized moment 

for short beams, while they are controlled by elastic lateral-torsional moment resistances for 

long unbraced spans. For steel beams with intermediate spans, their moment resistances are 

normally controlled by inelastic lateral-torsional moment resistances (AISC [1], CSA S16 [2], 

EC 3 [3]). As indicated in specifications [1-4] and many studies [4-21], the inelastic 

resistances are significantly influenced by residual stresses and initial imperfections (or initial 

out-of-straightness). Residual stress distributions on steel cross-sections depend on the 

manufacturing and processing conditions. They are usually classified into welded- and rolled-

based models [6-14] while initial imperfections depend on the manufacturing conditions [1-

4].  

Residual stresses of a welded section often have a complicated distribution in which  

residual stresses are highly localized at the weld areas (e.g., [6-11]), while the residual 

stresses of a rolled section often have a typical form as provided in Fig. 2a (e.g., [1-7]). It is 

noted that specifications AISC [1] and CSA S16 [2] seem not to distinguish the difference of 

residual stresses of welded and rolled sections [5], while specification EC 3 [3] account for 

the difference. The effect of residual stresses on the inelastic lateral-torsional buckling 

resistance has been widely studied. Mupeta et al [5] conducted a study to evaluate the 

different effects of residual stresses and initial imperfections on inelastic buckling resistances 

according to EC 3 [3]. Kabir và Bhowmick [5] performed a numerical study on the inelastic 

moment resistances of a slender beam under a uniform moment and different welded and 

rolled residual stress models. The study showed that the effect of residual stresses on buckling 

resistances was significant and it decreased the system capacity. Also, the resistances in [5] 

were successfully validated against experiment results, but they are lower than those provided 

by specification CSA S16 [2]. The study thus indicated that specifications AISC [1] and CSA 

S16 [2] overestimated the inelastic moment resistances. Dibley [8] presented an experimental 

study and a regression-based equation to determine inelastic lateral-torsional moment 

resistances of DL30 steel members subjected to uniform bending and a British Standard 15-

based residual stress model (with a uniform distribution of residual stresses on the section 

web). Other similar discussions of the effect of residual stresses on the buckling resistance of 

steel members were presented in studies [9-12].  

For the effect of imperfection, both specifications AISC and CSA S16 [1,2] accept an 

allowable initial imperfection of 1000L  in which L  is the unbraced length of the member, 

while EC3 [3] established analytical solutions for the inelastic buckling moment resistances 

based on different levels of initial imperfection (as provided in Table 5.1 of Eurocode 3 

specification [3,5]). Meanwhile, the current Vietnamese specification [4] seems not to cover 

the effect of initial imperfections. The effects of initial imperfection on the inelastic lateral 

torsional buckling of beam members under flexure were reported in many studies (e.g., [13-

18]). Abebe et al. [13] presented an inelastic buckling analysis of steel columns, while Elaiwi 

et al [14] developed numerical solutions for castellated beams. Timoshenko and Gere [15], 

Trahair et al [16], Galambos [17] and Ziemian [12] had books about the design of steel 

members under the effect of initial imperfections. However, the documents did not consider 

the combination of both residual stresses and initial imperfections on inelastic buckling 

resistances. Couto and Real [18] conducted a numerical investigation on the influence of 

imperfections in the lateral-torsional buckling of beams with slender I-shaped welded 

sections.  

Based on the present context, the present study will fill in the gap by conducting a 

comparison study on the inelastic moment resistances of wide flange steel beams with a 
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compact cross-section under the effect of both rolled-based residual stresses initial 

imperfections. Equations to evaluate the inelastic buckling resistances based on four typical 

specifications [1,2,3,4] are first summarized and discussed. Then, a numerical solution 

developed in ABAQUS [19] is going to be developed to determine the inelastic moment 

resistances. Because specifications often have different treatments to establish equations of 

buckling resistances, the present study is first going to compare the differences of the moment 

resistances between the four specifications [1,2,3,4] and the developed numerical solution. 

The effect of load positions on the cross-section may also change the inelastic moment 

resistances, thus they are going to be investigated in the present study. Through the 

comparisons, discussions of the characteristics of the specifications and the numerical study 

are finally clarified. 

2. STATEMENT OF THE PROBLEM 

A simply supported beam subjected to a midspan point load P is considered (Fig. 1a). The 

beam is laterally unsupported, it has a span of L (L=3,4 or 5m) and a prismatic W250x45 

cross-section [2]. The section meets compact conditions according to AISC [1] and class 1 

according to CSA S16 and EC 3 [2,3]. Three cases of load positions (i.e., top, middle and 

bottom positions) are considered (Figs. 1b,c,d). Residual stresses of rolled steels are included 

(Fig. 2a) and steel is assumed as a perfectly plastic material with an elastic modulus of 

200E GPa= , a yielding strength of Fy=350MPa and a Poisson’s ratio of 0.3 (Fig. 2b). A 

numerical solution is developed in the present study and it captures both residual and 

imperfection effects, in which the magnitude of the imperfection is taken as 1000L  [1,2,5]. It 

is required to evaluate and compare the inelastic lateral-torsional moment resistances based on 

specifications [1-4] and the numerical solution developed in the present study. 

 
 

 

 

 

(a)  (b)  (c)  (d)  

Figure 1. Description of the problem (a) beam profile, (b,c,d) Positions of load P on the cross-section  

 
(a) 

 
(b) 

Figure 2. Assumptions of the rolled steel (a) residual stresses and (b) stress-strain relationship 
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3. MOMENT RESISTANCE BASED ON AISC A360-16 SPECIFICATION [1]  

The AISC [1] specification provides formulas to determine the lengths Lp and Lr to 

distinguish the limits of the plasticized zone, inelastic buckling zone and elastic buckling 

zone. The limits can be evaluated as  

 1.76p y
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where yr  is radius of gyration about y −  axis, E is modulus of elasticity of steel, J  is the 

St. Venant torsional constant, yI  is the flexural moment of inertia about the weak axis of the 

section, Sx is elastic section modulus taken about the x-axis, and ho is the distance between the 

flange centroids, 
wI  is the warping torsional constant of the section.  

For the present doubly symmetric compact I-shaped sections ( 250 45W  ) and the beam is 

laterally unsupported, the factored moment resistance
rM is based on the plasticized moment 

resistance when b pL L  as follows  

 r p yM M ZF = =   (4) 

where Z is the plastic section modulus. When p b rL L L  , resistance
rM is based on inelastic 

lateral-torsional buckling strength, i.e., 
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 and when 
b rL L , resistance

rM is based on elastic lateral-torsional buckling strength, i.e., 

 r cr x pM F S M=    (6) 
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In which
bL  is the length of unbraced segment of beam (i.e., the span in the present study), 

and 
bC is the coefficient to account for increased moment resistance of a laterally unsupported 

doubly symmetric beam when subject to a moment gradient. In AISC specification [1], it does 

not provide a specific equation for 
bC that accounts for both loading conditions and load 

height position effects. However, it recommends the formula provided in Ziemian [12] to 

determine
bC . Based on the boundary and loading conditions of the present problem, 

coefficient 
bC  is determined as  
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4. MOMENT RESISTANCE BASED ON CSA S16 SPECIFICATION [2] 

For the double symmetric cross-section with class 1 section and the beam is laterally 

unsupported, the elastic buckling moment resistance of the beam is evaluated by the following 

equation. 
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in which 
wI  is the warping torsional constant of the section, J  is the St. Venant torsional 

constant, 
bL  is the length of unbraced segment of beam (i.e., the span in the present study), 

yI  is the flexural moment of inertia about the weak axis of the section, E  and G  are the 

modulus of elasticity and shear modulus of the steel, and 
bC  is the coefficient to account for 

increased moment resistance of a laterally unsupported doubly symmetric beam when subject 

to a moment gradient and it is evaluated based on Ziemian [12] as  
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where 1.35A=  and 21.0 0.18 0.649B W W= − +  in which 
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Also, the plasticized moment resistance of a wide flange steel section can be evaluated as  

 r p yM M ZF = =   (13) 

where Z is the plastic section modulus. Once 
uM  and pM  are known, the factored moment 

resistance, 
rM , of the beam shall be determined as follows:   When 0.67u pM M :  
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 And when 0.67u pM M :   

 
r uM M=   (15) 

5. MOMENT RESISTANCE BASED ON EUROCODE 3 SPECIFICATION [3]  

For the double symmetric cross-section with class 1 section and the beam is laterally 

unsupported, the factored moment resistance, 
rM , of the beam is determined as follows 

 
y

r LT

MI

ZF
M 


=   (16) 

in which 
MI is safety factor and it is taken as 1.0  in the present study.

LT is the reduction 

factor for lateral-torsional buckling and it should not be greater than 1.0 . Based on Clause 

6.3.2.2 [3], the reduction factor 
LT can be evaluated as  
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in which 
LT is an imperfection factor and it is 

taken as 0.21 for the rolled 250 45W  section while LT y uZF M = where 
uM is the elastic 

critical moment for lateral-torsional buckling as similarly evaluated through Eq. (18).  

For a double symmetric cross-section with classes 1 and 2 sections and the beam is 

laterally unsupported and simply supported, the elastic buckling moment resistance of the 

beam based on EC 3 [3] is evaluated by the following equation. 
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In Eq. (18), 
bC  is a coefficient to account for increased moment resistance of a laterally 

unsupported doubly symmetric beam when subjected to a moment gradient. 
2C  is a 

coefficient to account for the effect of load height position. For the present example where the 

point load is applied at midspan, Eurocode 3 provides 
1 1.348C =  and 

2 0.630C = . 
Py is the 

distance between the point of load application and the shear center (i.e., sectional centroid in 

the present problem), it is positive for loads acting towards the shear center from their point of 

application. 

6. MOMENT RESISTANCE BASED ON VIETNAMESE SPECIFICATION [4]  

In Vietnamese design specification of steel structures TCVN5575-2012 [4], the case in 

which point loads applied at the centroid of the section is not provided. Instead, only the 

moment capacities of steel beams when a point load applied on the top or bottom flange are 

provided. The factored moment resistance of the system (Clause 7.2.2.1 of TCVN5575-2012) 

is evaluated as follows 

 
r c b cM f W =   (19) 

in which f  is the factored strength of steel, taken as 350 MPa in the present study, 
c  is a 

factor of working condition and taken as 0.95 as indicated in Table 3 of the specification, 
cW  

is the flexural section modulus and it is evaluated as 2c xW I h=  where 
xI is the sectional 

moment of inertia about strong axis, h is the depth of the section. Factor 
b  is defined in 

Appendix E of TCVN5575-2012 and evaluated by 
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In order to evaluate factor  , a factor  should be evaluated as follows  
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For the case in which the point load is applied on the top flange, factor 1.75 0.09 = + if 

0.1 40   and 5 23.3 0.053 4.5 10  −= + −   if 40 400  . Also, for the case in which 

the point load is applied on the bottom flange, factor 5.05 0.09 = + if 0.1 40   and 
5 26.6 0.053 4.5 10  −= + −   if 40 400  . It is noted that the units of forces and lengths 

are in DaN and cm. Also, the TCVN5572-2012 specification [4] only provides the solutions 

when the point load is applied on the top flange or bottom flange and it does not provide a 

solution where the point load is applied at the section centroid (at web midheight). 

7. MOMENT RESISTANCE BASED ON A NUMERICAL STUDY  

A numerical study based on ABAQUS software [19] is developed in the present study to 

investigate the inelastic moment resistance of the steel beam under the effects of residual 

stresses, initial imperfections and positions of the point load (Figs. 1a-d). Two numerical 

models are proposed, in which the first model is denoted as NS-FEA in which no web 

stiffener is applied to the beam, while the second model is denoted as S-FEA in which three 

web stiffeners are applied at the mid-span and two end sections of the beam (Figs. 3a,b). The 

addition of web stiffeners aims at reducing web distortional effects at midspan and supports. 

It is noted that web stiffener requirements may be more strict in a specific specification [e.g., 

1-3]. Geometric nonlinearity analyses are conducted at step level (*STEP, NLGEOM=YES).  

  
(a) (b) 

Figure 3. Two numerical models under deformation, (a) NS-FEA and (b) S-FEA 

The ABAQUS models are created in .inp files (input data is written in text forms). The 

wide flange beams is meshed by using C3D8R elements through 5 independent numbers of 

elements
1n  to 

5n (Fig. 4) in which 
1n  is the number of elements across the overhang parts of 

the flanges, 
2n  is the number of elements across the flange thicknesses, 

3n  is the number of 

elements across the web thicknesses, 
4n  is the number of elements across the clear web depth, 

and 
5n  is the number of elements along the beam. The 8-node brick element C3D8R is 

selected from the ABAQUS library. The element has 24 degrees of freedom (with three 

translations per node) and uses reduced integration to avoid volumetric locking. Thus, the 

element has a single integration point located at the element centroid [20,21]. A mesh 

sensitivity is conducted and a mesh, with it the convergence of inelastic moment resistances 

are obtained, are 
1 20n = , 

2 3 4n n= = , 
4 40n = , 

5 300n =  elements for span 3.0L m= , 

5 400n = elements for span 4.0L m= , and 
5 500n = elements for span 5.0L m= . 
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5n   

Figure 4. Five independent numbers of elements controling the mesh of the wide flange beam 

Boudary conditions of simply supports are modelled as presented in Figs. 5a,b, in which, 

the boundary conditions at the beam ends are applied as 

*BOUNDARY 

<Node1C0>, 2 

<Node1C0>, 3 

<Node1CL>, 2 

U2lateralfixat0, 1 

U2lateralfixatL, 1  

 

where Node1C0 is the centroid of the steel cross-section at the pin end while Node1CL is 

that at the roller end. To avoid distortional web effects, nodes along the transversely 

symmetric axis of the section are restrained against lateral displacements through node set 

“U2lateralfixat0” and “U2lateralfixatL”. Indexes 1, 2, 3 in the *BOUNDARY command 

indicate the lateral, transverse and longitudinal directions, respectively. 

 

    

 
 

 

(a) At the pin support (b) At the roller support 

 

zoomed in 

zoomed in 

 

Figure 5. Boundary condition of the problem 

In the S-FEA models, the thicknesses of the web stiffeners are taken as 10mm while the 

widths of the stiffeners are taken as the overhang parts of the flanges. 

Both NS-FEA and S-FEA models include the effect of residual stresses and initial 

imperfections. To incorporate the effect of residual stresses, residual stress values in elements 

are first stored in a .csv file and they are then inputted into a .inp file by using *INITIAL 

CONDITIONS, TYPE=STRESS keyword (this procedure is equivalent to a sub-routine). A 

blank *STEP is finally set to balance stresses in the steel, before the loading step is evoked 

(Fig. 6a). The initial imperfection is incorporated into the NS-FEA and S-FEA models 
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through the first lateral-torsional buckling mode, which is inputted by using 

*IMPERFECTION keyword (Fig. 6b). The magnitude of the initial imperfection of the beam 

axis is 1000L  (Chapter C of AISC [1] and Clause 28.6 of CSA [2]). 

 
 

(a) Residual stresses (b) Initial imperfection ( The picture only shows 

a half of the beam in the axial direction) 

Figure 6. Implementation of residual stresses and initial imperfection in the present FEA solutions  

 

Elastic lateral torsional buckling, inelastic buckling, and full plasticity resistances are 

numerically evaluated based on the NS-FEA and FEA models (e.g., Table 1 and Fig. 7 for the 

beam with span L=4m loaded on top flange). The moment resistances of the NS-FEA and S-

FEA models are observed to be the inelastic buckling resistances (Table 1 and Fig. 7) based 

on local buckling effects. A description of deformation procedure of S-FEA models under 

loading is presented in Fig. 8.  

 

Table 1. Moment resistances  (kN.m) in the S-FEA 

model with span L=4m 

Load 

position 

L=4m 

Mu Mp Min S-FEA 

(1) (2) (3) 
(4) = 

min(1,2,3) 

 

161.1 210.7 129.2 129.2 
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Figure 7. Midspan moment-deflection relationship 

for span L=4m loaded on top flange  
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Figure 8. Responses of the steel beam under the inelastic S-FEA analysis (a) at the first step (with 

residual stresses, initial imperfection), (b,c) at intermediate increments, (d, e) at the final increment 

 

8. RESULT DISCUSSIONS  

Based on Eqs. (1) and (2) in AISC [1], limits of plasticized, inelastic buckling and elastic 

buckling zones can be evaluated as Lp = 1.48m and Lr = 4.89m. Based on CSA [2] is the 

limits are found as 2.58m and 5.90m, respectively. Specifications [3,4] seem not to provide 

the limits. This is basically a difference between the specifications. The present NS-FEA and 

S-FEA models are conducted for spans L=3, 4, 5m those belong to the inelastic buckling 

zones. 

Comparison of the inelastic buckling moment resistances predicted by specifications [1-4] 

and the present NS-FEA, S-FEA solutions: 

Figure 9 presents the relationship between moment resistances against different unbraced 

spans based on specifications [1-3] and the present numerical NS-FEA and S-FEA models for 

the beams subjected to a point load P applied at the section centroid. Overlaid on the figure 

are Limits 1 and 2 based on the CSA S16 [2] specification. Among the solutions, moment 

resistances based on EC 3 specification are taken as a reference to compare agaisnt other 

solutions. Table 2 provides the values of the inelastic moment resistances. A significant 

difference between the specifications-based resistances can be observed, in which the AISC 

predicts the highest values,while the EC 3 predicts the lowest moments. For example of span 

L=4.0m, the moment based on EC 3 is 147 kN.m, while those based on AISC and CSA S16 

are 204.8 and 180.7 kN.m, correponding to the differences of 39.3 and 22.9%. Similar large 
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differences between the moments based on the AISC, CSA and EC 3 specifications can be 

observed for spans L=3.0m and L=5.0m (Table 2). 

As observed in Fig. 9, the moment resistances based on the present numerical NS-FEA and 

S-FEA models lie between the EC 3 and CSA S16 solutions, in which the NS-FEA moments 

are relatively close to EC 3 solutions. This indicates that the present FEA solutions 

excellently agrees with EC 3 and CSA specifications [1,3]. The finding is consistent with the 

work of Kabir and Bhowmick [6]. Because there is no web stiffener in the NS-FEA model 

and there are 3 stiffners in the S-FEA model, this indicates that the addition of web stiffeners 

increases the system capacity.  

Limit 1 Limit 2
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Figure 9. Moment resistance against different unbraced span lengths based on  specifications [1-4] and 

the present numerical NS-FEA and S-FEA models for the beams loaded at the section centroid 

Table 2. Inelastic moment resistances (kN.m) and % differences based on  specifications [1-4] and the 

present NS-FEA and S-FEA models for the beams loaded on top flange, centroid and bottom flange 

Load 

position 

Span 

(m) 

Moment resistance (kN.m) % difference compared to EC 3 solution 

EC 3 AISC 
CSA 

S16 
TCVN 

NS-

FEA 

S-

FEA 
EC 3 AISC 

CSA 

S16 
TCVN 

NS-

FEA 

S-

FEA 

Top 

flange 

3 145.2 160.8 183.1 189.9 136.7 151.7 0.0 10.8 26.1 30.8 -5.9 4.5 

4 117.0 147.1 156.5 129.4 121.2 129.2 0.0 25.7 33.7 10.6 3.6 10.4 

5 97.1 129.9 131.1 101.4 106.9 114.1 0.0 33.8 34.9 4.4 10.0 17.5 

Section 

centroid 

3 171.1 210.7 202.0 - 165.0 186.0 0.0 23.2 18.1 - -3.6 8.7 

4 147.0 204.8 180.7 - 149.2 163.7 0.0 39.3 22.9 - 1.5 11.4 

5 124.1 173.2 158.8 - 133.9 145.6 0.0 39.5 27.9 - 7.9 17.3 

Bottom 

flange 

3 186.3 210.7 210.7 210.7 181.6 209.3 0.0 13.1 13.1 13.1 -2.5 12.3 

4 169.5 210.7 198.0 210.7 180.5 198.4 0.0 24.3 16.8 24.3 6.5 17.0 

5 149.6 210.7 179.7 195.3 179.5 193.7 0.0 40.8 20.1 30.5 20.0 29.4 

Figures 10a,b present the relationship between moment resistances against different 

unbraced spans based on specifications [1-4] and the present numerical NS-FEA and S-FEA 

models for the beams subjected to the point load P applied at the top and bottom flange, 
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respectively. The moment resistances based on EC 3 moments are taken as a reference to 

compare against other solutions. The AISC and CSA S16 solutions again overpredict the 

moments from 10.8 to 40.8% (Table 2).  

When the load is applied at the top flange (Fig. 10a, Table 2), the moment resistance for 

span L=3.0m based on the TCVN  is 30.8% higher than that of the EC 3. More agreements of 

the moments for spans greater than L= 4.0m between the TCVN and EC 3 solutions are 

observed in Fig. 8a. Meanwhile, the NS-FEA and S-FEA models- based moment resistances 

are found to well agree with the EC 3 solutions. 

When the load is applied at the bottom flange (Fig. 10b, Table 2), the moment resistance 

for span L=3.0m based on NS-FEA agrees with that of the EC 3. However, the NS-FEA and 

S-FEA are generally in good agreement with the CSA S16 solutions. The moment resistances 

based on TCVN are found to be significantly higher than those of the EC2.  

 

(b)

(a)

 
 

Figure 10. Moment resistance against different unbraced lengths based on  specifications [1-4] and the 

present NS-FEA and S-FEA models for the beam loaded on the (a) top flange, (b) bottom flange 

 

Effect of load height effects for the inelastic buckling moment resistances: 
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As discribed in Figs. 1a-d, the present study is going to investigate the effect of load 

positions applied on the beam cross-section. Figures 11a-c respectively present the 

relationship between moment resistances against different load positions for spans L=3.0, 4.0 

and 5.0m based on the present numerical S-FEA models and the EC 3 solutions. The 

horizonal axis presents the position of load application, in which load position of -126.5mm 

correponds to the load applied at the top flange, load position of 0 correponds to the load 

applied at the section centroid, and load position of 126.5mm correponds to the load applied 

at the bottom flange. As observed, the moment resistances based on both the present and the 

EC 3 solutions are significantly varied according to the load position. For example of span 

L=4.0m (Fig. 11b), the moment based on the present S-FEA model is 129.2 kN.m when the 

load is applied at the top flange, that is 198.4 kN.m when the load is applied at the bottom 

flange, correponding to a difference of upto 53.6%. Also, the moment based on the present 

EC 3 solution is 117.0 kN.m when the load is applied at the top flange, that is 169.5 kN.m 

when the load is applied at the bottom flange, corresponding to a difference of 44.9%. Similar 

observations for spans L=3.0 and 5.0m can be obtained. 

   
(a) L=3m (b) L=4m (c) L=5m 

Figure 11. Moment resistance against different positions of load applications based on the present 

numerical NS-FEA and S-FEA models and the EC 3 solutions 

9. CONCLUSIONS 

The present study successfully developed a numerical solution in ABAQUS software to 

predict inelastic buckling moment resistances of rolled steel beams with compact sections and 

subjected to the effects of residual stresses and initial imperfections. The numerical models-

based moment resistances are well-validated against four specifications AISC [1], CSA S16 

[2], EC 3 [3] and TCVN5575-2012 [4]. Through comparisons between the specifications and 

the numerical solutions, key conclusions can be obtained in the following: 

• A significant difference between the specifications-based moment resistances can be 

observed, in which the AISC solution predicts the highest values, while the EC 3 solution 

predicts the lowest moments. The difference may be explained by the different formulas 

used in specifications [1-4] to evaluate the moment resistances, as presented in sections 

3-6 of the present study.   

• The moment resistances based on the present numerical NS-FEA and S-FEA models lie 

between the EC 3 and CSA S16 solutions, in which the NS-FEA moments are relatively 

close to EC 3 solutions. The present FEA solutions excellently agree with EC 3 and CSA 

specifications. Also, the numerical study shows that the addition of web stiffeners 

increases the system capacity.  
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• When the load is applied at the top or bottom flange, the moment resistances based on the 

AISC and CSA S16 solutions are significantly higher than the EC 3 solutions. When the 

load is applied at the top flange, the moment resistances base on the TCVN solution are 

generally agree with those of the EC 3 solutions. Meanwhile, the NS-FEA and S-FEA 

models-based moment resistances are found to excellently agree with the EC 3 solutions. 

When the load is applied at the bottom flange, the moment resistances based on TCVN 

solution are found to be significantly higher than those of the EC 3 solution. However, 

the NS-FEA and S-FEA solutions are generally in good agreements with the CSA 

solutions.  

• Effect of load height positions for the inelastic buckling moment resistances are 

significant, as investigated by using the present S-FEA model and the EC 3 solution. 

Among three positions considered (i.e., top flange, section centroid and bottom flange), 

the weakest moment resistances correspond to the position where the point load P is 

applied at the top flange.  

• Among the four specifications investigated (i.e., AISC, CSA S16, EC 3, and TCVN), the 

EC 3 specification predicts the lowest moment resistances. Therefore, it can be 

considered as a consevative solution in the designing of the moment resistances. 
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