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Abstract. Artificial neural network (ANN), a powerful technique, has been used widely over 

the last decades in many scientific fields including engineering problems. However, the 

backpropagation algorithm in ANN is based on a gradient descent approach. Therefore, ANN 

shows high potential in local stagnancy. Besides, choosing the right architecture of ANN for a 

specific issue is not an easy task to deal with. This paper introduces a simple, effective hybrid 

approach between an optimization algorithm and a traditional ANN for damage detection. The 

global search-ability of a heuristic optimization algorithm, namely grey wolf optimizer 

(GWO), can solve the drawbacks of ANN and also improve the performance of ANN. Firstly, 

the grey wolf optimizer is used to update the finite element (FE) model of a laboratory steel 

beam based on the vibration measurement. The updated FE model of the tested beam then is 

used to generate data for network training. For an effective training process, GWO is utilized 

to identify the optimal parameters for ANN, such as the number of the hidden nodes, the 

proportion of dataset for training, validation, test, and the training function. The optimization 

process provides an optimal structure of ANN that can be used to predict the damages in the 

beam. The obtained results confirm the accuracy, effectiveness, and reliability of the proposed 

approach in (1) alleviating the differences between measurement and simulation and (2) 

damage identification including damage location and severity, in the tested beam considering 

noise effects. For both applications, dynamic characteristics like natural frequencies and mode 

shapes of the beam derived from the updated FE model, are collected to calculate the 

objective function. 

Keywords: model updating, grey wolf optimizer, artificial neural network, hybrid approach, 
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1. INTRODUCTION  

The most effective way to prevent unexpected failures of structures is to develop an 

assessment tool that can predict their health status timely. The presence of damages in 

structures can cause changes in modal properties. Therefore, these dynamic properties are 

efficient parameters in damage detection. These characteristics can be easily obtained under 

ambient excitation with low-cost and simple operation [1-4]. However, vibration 

measurement always faces up to noise that contaminates the collected data. Unpure data can 

lead to misidentifying the location as well as the quantity of damage. This reduces the 

effectiveness of using the modal properties.  

An artificial intelligence-based approach inspired by the natural structure of the human 

brain is a powerful tool to solve this problem. The application of this approach is very diverse 

such as prediction, classification or estimation [5-6]. Seguini et al. successfully employed 

ANN and Particle Swarm Optimization (PSO) in crack prediction in the pipeline [7]. They 

aimed to enhance the performance of ANN by means of identifying the best weights and 

biases. In studies [8-9], Khatir et al. proposed a combination of optimization algorithms and 

ANN, to identify the damage severity based on damage indices e.g. Cornwell indicator, modal 

strain energy. Ho et al. [10] utilized a hybrid algorithm particle swarm optimization – 

gravitational search algorithm (PSOGSA), to improve Feedforward neural network (FNN) 

based on the optimal training parameters (weights and biases). Quantification of damage in a 

steel plate was the main aim of this study. Tran-Ngoc et al. combined ANN and Cuckoo 

search to obtain the best training parameters for damage detection in beam-like structures and 

a truss bridge [11]. Trapping in local minima is the main shortcoming of ANN. Authors in 

[12] developed a new method that combines genetic algorithm (GA) - Cuckoo search (CS) 

and ANN, namely ANNHGACS, to avoid local stagnation. In this approach, the hybrid 

evolutionary algorithm and ANN work parallel during the network training process. The 

success of damage detection in laminated composite structures confirmed its feasibility in 

practical application.  

Almost the above studies did not focus on the size of the hidden layer in ANN. As we 

know, the size of input and output layers can be identified based on the data used. However, 

how many neurons should be used in a hidden layer for a specific problem is not easy to 

answer. Stated differently, choosing the number of nodes in each hidden layer is a crucial 

decision that can tremendously affect the performance of a neural network. Too many nodes 

or too few nodes in each hidden layer can cause overfitting and a time-consuming process or 

underfitting. In many cases, deciding the number of nodes in a hidden layer was based on 

experience or investigation of several numbers of hidden neurons. Some authors studied the 

optimal number of the hidden node for their problems [13-14]. However, there is not a 

consistent answer for the calculation of the optimal number of neurons in each hidden layer. 

Another matter in ANN is the proportion of data for training, validation, and test. Either less 

training data or less testing data can cause greater variance in estimated parameters. Some 

common data splits are 60-40, 70-30, 80-20, etc. The ratio of data division can be different 

depending on the specific problem, the amount of available dataset. Pauletto et al. proposed 

an optimal ANN for multicomponent adsorption by manually investigating several parameters 

e.g. activation function, training algorithm, number of hidden nodes [15]. In this study, they 

identified the optimal ANN based on mean squared error and R-values. It can be said that the 

approach to a creation of an optimal artificial neural network requires much effort, experience 

and time. 
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Therefore, this paper introduces a simple approach to obtain an optimal ANN based on 

calculation instead of experience or manual investigation. The core of the proposed method is 

the global search-ability of a heuristic optimation algorithm, namely grey wolf optimizer 

(GWO) [16]. Stochastic techniques in GWO is employed to determine the best value of 

training parameter e.g. the number of hidden neurons, data proportion, and training function 

based on the obtained mean squared error (MSE). 

The paper consists of four sections. The introduction is in the first section. The next 

section is the methodology of the proposed method GWOANN. Section 3 is the case study 

that uses GWO for model updating of a laboratory steel beam and improves the training 

process of ANN for damage detection. The last section claims the highlight conclusions. 

2. GWO-ANN METHODOLOGY 

2.1. Grey wolf optimizer GWO 

The hunting behaviour and social hierarchy of grey wolves are the inspirations of grey 

wolf optimizer (GWO) [16]. In their social hierarchy, the three top wolves i.e. wolf , ,  

representing the three best solutions, lead the pack in hunting preys. Encircling prey is 

described in a mathematical form: 

( ) ( )D C X X=  −
rr r r

p iter iter  (1) 

( 1) ( )piter iter+ = − X X A D
rr r r

 (2) 

( ), ( )p iter iterX X
r r

 represent the vector of wolf and prey’s positions at the current iteration 

iter. The two coefficient vectors ,A C
r r
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2r
r

 in 
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In GWO, the search agents’ positions are updated based on the positions of the three best 

search agents. Therefore, the three best solutions in the search space are stored in each 

iteration. Eqs. (1), (2) are rewritten concerning the three wolves , , and : 

/ / 1/2/3 / /     =  −D C X X
rr r r

 (6) 

1/2/3 / / 1/2/3 / /     = − X X A D
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 (7) 

A new position of each wolf in the next iteration can be identified as follows: 
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3
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It can be observed that the three wolves , , and  try to locate the prey’s position and 

the positions of other wolves can be randomly updated around the prey. 

 

2.2. How does GWO-ANN work 
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Figure 1. An architecture of ANN. 

Figure 1 shows an ANN’s structure for damage identification consisting of one input 

layer, one hidden layer and one output layer. Weights wij implies the connection between the 

input node ith and hidden node jth while wjk represents the connection between the hidden node 

jth and output node kth. The biases at node jth in the hidden layer and node kth in the output 

layer are j and k. 

In this study, a suitable structure of ANN can be obtained by trial and error. Training with 

the known inputs and outputs is carried out by using an optimization algorithm, GWO. The 

step-by-step operation of GWOANN is introduced as in Figure 2. 

From the below flowchart, unknown parameters e.g. the number of hidden nodes, data 

split, and training function, are input to GWO as variables. Then ANN is used to calculate the 

fitness of every individual wolf. Next, these fitness values are used to identify the top three 

wolves , , and . All search agents’ positions are updated until meeting the stop condition 

i.e. either the current iteration greater than the max number of iteration or the best fitness is 

less than 10−6. During the optimization process, GWOANN tries to minimize the value of the 

fitness function as calculated: 

( )
2

1

1 n
z z

predicted target

z

objective function MSE Y Y
n =

= = −  (9) 

where n is the total number of data samples, 
z z

predicted targetY and Y  imply the predicted and target 

values when training data zth is used, respectively. 
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Figure 2. Flowchart of GWOANN’s working procedure. 

 

3. CASE STUDY 

3.1. Experimental description 

The vibration of a laboratory beam with a free-free condition is the objective of this 

study. Geometrical dimensions of the beam are L×b×h = 1×0.07×0.0096 (m) with L, b, and h 

are the length, width, and height of the beam, respectively. The above dimension is an average 

value using measured values at 15 positions as in Figure 3a.  

In the first step, the dynamic properties of the beam are employed to build an FE model 

based on the inverse problem. In the second step, the updated FE model is assumed to suffer 

damage scenarios with various elements and severities. The generated data is collected and 

served in damage identification.   

The measurement grid involved 30 points which were arranged along the beam. Three 

setups were used to cover all these points. One setup included 16 accelerometers with 8 

sensors were served as reference points, and the others were roving points. These setups were 

connected by reference points i.e. the underlined and red numbers (see Figure 3a). The 

sampling rate was 2651 Hz, and the recording time was 300 seconds.  

On-site sensor placement is displayed as in Figure 3b. A hammer struck the considered 

beam to create excitation. Free vibration of the beam was collected and treated by an output-

only technic, namely covariance stochastic subspace identification (COV-SSI) [17]. Modal 

properties of the beam e.g. natural frequencies and mode shapes then were identified as in 

Table 1 and Figure 4.  
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a. Entire measurement points on the beam b. Using 16 accelerometers in one setup 

Figure 3. Details of sensor placement. 

 

Table 1. Summary of natural frequencies of the first six modes. 

Mode Frequencies, f (Hz) Mode type 

1 50.79 Vertical bending 

2 140.11 Vertical bending 

3 273.12 Vertical bending 

4 454.76 Vertical bending 

5 677.31 Vertical bending 

6 947.12 Vertical bending 

 

 
 

 

1st mode, f1=50.79 Hz 2nd mode, f2=140.11 Hz 3rd mode, f3=273.12 Hz 

   

4th mode, f4=454.76 Hz 5th mode, f5=677.31 Hz 6th mode, f6=947.12 Hz 

Figure 4. The first six modes obtained from the measurement. 

 

3.2. Initial numerical model and model updating 

a. Initial FE model 

A FE model was built in ANSYS [18] to perform the dynamic behaviour of the tested 

beam based on vibration measurement. In the initial FE model, sixteen SHELL181 elements 

were employed to model the beam with a free-free boundary condition. The initial material 

properties: Young’s modulus E=2×1011Mpa, density =7800 kg/m3, Poisson’s ratio  = 0.3 

were used for the FE model.  
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1st mode, f1=49.97 Hz 2nd mode, f2=137.74 Hz 3rd mode, f3=270.06 Hz 

   

4th mode, f4=446.45 Hz 5th mode, f5=666.89 Hz 6th mode, f6=931.23 Hz 

Figure 5. The first six modes obtained from the initial FE model. 

 

The first six modes were extracted from the initial FE model. Figure 5 are the obtained 

modes from dynamic analysis. In Table 2, the differences in frequencies between simulation 

and measurement are less than 1.83% for all considered modes. However, these deviations 

should be reduced before the FE model can be used as a baseline model for damage detection. 

 

Table 2. Calculated and measured frequencies. 

Mode 
Frequencies, f (Hz) ErrorInitial 1   

(%) Measurement Initial FE 

1 50.79 49.97 1.61 

2 140.11 137.74 1.69 

3 273.12 270.06 1.12 

4 454.76 446.45 1.83 

5 677.31 666.89 1.54 

6 947.12 931.23 1.68 

 

b. Model Updating  

Underestimated stiffness and manufacturing imperfection of the beam, weights of sensors 

could cause discrepancies in frequencies between the initial FE and measurement. Therefore, 

these effects were taken into account via 17 updating parameters with one Young’s modulus 

and 16 densities concerning 16 elements in the model, as shown in Table 3.  

Table 3. Uncertain parameters in the initial FE model. 

Updating parameters Lower bound Upper bound 

Young’s modulus, E 1.91011 2.11011 

Density, e with e=1 to 16 7750 8050 

All these parameters were treated as variables in an optimization process using GWO. 

The objective function was calculated using the changes in frequencies and mode shapes as 

follows: 

 
1 ErrorInitial = (Measurement − Initial FE)100/Measurement 
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Where M is the number of considered modes, ,calculated measured

q qf f  imply numerical and 

experimental frequencies regarding mode qth, MACq,q indicates diagonal values of MAC 

matrix that was identified as: 
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Where N=15, is the number of considered nodes, , ,,measured calculated

p q p q   are measured and 

calculated displacement mode shapes at node pth in mode qth, T is the transposition.  

 

Figure 6. The evolutionary curve of fitness values using GWO. 

GWO was employed to minimize the objective function until meeting a stopping 

condition, the current iteration greater than the max number of iteration or the best fitness is 

less than 10−6. In this case, some parameters for GWO e.g. population 50, iteration 100 were 

chosen. Modal properties of the first six modes were utilized to compute the objective 

function as in eq. (10). After 100 iterations, the convergence curve of fitness values is plotted 

in Figure 6. The best fitness value is less than 5.510−5. This guarantees a good match 

between simulation and measurement.  

 

Table 4. The obtained uncertainties after updating. 

1 2 3 4 5 6 7 8 E 

8031 7896 7750 8009 7885 7933 7750 8050 

2.11011 9 10 11 12 13 14 15 16 

8050 7750 7820 8050 7953 8002 8012 7959 
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Table 5. Updated frequencies. 

Mode 
Frequencies, f (Hz) ErrorUpdated 2  

(%) 
MAC 

Measurement Initial FE Updated FE 

1 50.79 49.97 50.77 −0.04 0.999 

2 140.11 137.74 140.11 0.00 0.994 

3 273.12 270.06 273.76 0.23 0.999 

4 454.76 446.45 454.56 −0.04 0.998 

5 677.31 666.89 677.49 0.03 0.999 

6 947.12 931.23 947.29 0.02 0.997 

The updated parameters in Table 4, then were input to the FE model to recalculate modal 

characteristics. Table 5 indicates that the maximum error between simulation and experiment 

is significantly decreased from 1.83% to under 0.23%. All MAC values are higher than 0.994. 

These confirm that the updated FE model can perform similar behaviour compared with the 

real one. Stated differently, the updated FE model can be considered as a baseline model that 

is used for defect identification. 

 

3.3. Damage detection using GWOANN 

In this section, several multiple damage scenarios with white Gaussian noise are used to 

evaluate the proposed approach GWOANN compared to the traditional ANN. MSE, error 

histogram and regression R-values are the comparative objectives.    

a. Damage scenarios and damage index 

 

Figure 7.  Element label on the updated FE model. 

This study aims to investigate the ability of a hybrid method in identifying the optimal 

number of hidden neurons, data division and training function for ANN. To reduce the 

computational time, two elements among 5 to 12 were assumed to be damaged with the same 

level from 1 to 50% at an interval of 1%. There were 2

850 50 28 1400samplesN C=  =  =  samples.  

Table 6. The assumed damaged elements and corresponding levels. 

Scenarios Element 1 Element 2 Stiffness reduction (%) 

1 6 7 35.5 

2 6 8 30.5 

3 6 10 33.4 

4 7 11 32.5 

5 8 10 25.3 

6 9 11 37.5 

 
2 ErrorUpdated = (Updated FE − Measurement)100/Measurement 
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Besides, several extra damage scenarios were generated to evaluate the trained network in 

Table 6. The dynamic properties of the healthy and unhealthy beam were added white 

Gaussian noise with signal-to-noise ratio, snr = 50 dB. These dynamic properties were 

collected to calculate the damage index. 

In this study, modal flexibility index was chosen as the damage indicator due to its 

sensitivity to damages when a few lower modes obtained [19]. The flexibility matrices of 

healthy and unhealthy structures, MFH and MFUH are calculated: 

, ,2
1

1
.

M
T

H p q p q

q q H
f=

 
=   

  
MF  (12) 

, ,2
1

1
.

M
T

UH p q p q

q q UH
f=

 
=   

  
MF  (13) 

where M is the number of investigated modes, 
,p q indicates mass-normalized mode 

shape of mode qth, fq natural frequency in mode qth, superscript T implies transposition. 

Changes in the flexibility matrices between damaged and undamaged structures are as 

follows: 

UH H= −ΔMF MF MF  (14) 

The damage index at location pth is the maximum absolute values of each column in 

MF matrix: 

maxp column p=ΔMF ΔMF  (15) 

Figure 8 is an illustration of the damage index MF along the beam in two damage cases.  

In the first case, two elements 6 and 8 are assumed to be decreased stiffness by 30%. A 

stiffness reduction of 15% in two elements 7 and 10 is considered in the second case. In each 

case, damage indices at 15 points (labelled in Figure 7), damaged elements and corresponding 

extent are collected to generate data training in the next section. In this study, 15 neurons in 

the input layer consist of values of damage indices at 15 points. The output layer includes 

three neurons that represent two labels of defected elements and one severity. The summary 

table of input parameters and target outputs are shown in Table 7. 

  

a. Case 1: Elements 6, 8 / 30% b. Case 2: Elements 7, 10 / 15% 

Figure 8. Maximum absolute flexibility change index at 15 points along the observed beam. 



Transport and Communications Science Journal, Vol. 73, Issue 1 (01/2022), 1-15 
 

11 

 

b. The architecture of the neural network 

Some pre-set parameters for the traditional ANN were: 2/3Inodes + Onodes = 13 hidden 

nodes [20-21], a common data division 70-15-15 for training, validation and test, using train 

function Levenberg Marquardt (trainlm). In contrast, GWOANN identified all these 

parameters based on an optimization process. Several training functions [15] e.g. Levenberg-

Marquardt (trainlm), BFGS quasi-Newton (trainbfg), Scaled conjugate gradient (trainscg), 

Gradient descent with momentum and adaptive learning rate (trainingdx), and Resilient 

backpropagation (trainrp), are investigated its effectiveness for this problem. Bayesian 

Regulation (trainbr) was not used in this study due to its computational cost. 

Table 7. Details of ANN’s architecture. 

Method 
Input  

nodes 

Hidden  

nodes 

Output  

nodes 

Training 

Function 

ANN 15 13 3 Trainlm 

GWOANN 15 Hnodes  [1 – 30] 3 

The best one from “trainlm, 

trainbfg, trainscg, trainingdx, 

trainrp” 

Authors in [20] also mentioned that the size of the hidden layer should be less than twice 

input neurons. Therefore, an interval of the number of hidden neurons from 1 to 2Inodes=30 

was used to avoid overfitting and reduce the computational time. Data samples for training 

varied from 50 to 80% of the total samples. The data for validation and test was equally 

divided based on the identified data samples for training. 

c. Results 

An optimization process was conducted by GWO with population 40, iteration 50. After 

4098 seconds, the convergence curve of the best fitness during 50 iterations are plotted as in 

Figure 9. The best value of the fitness function (MSE) is quickly converged after 6 iterations 

then levelling off. The optimal architecture of ANN is 15-19-3, using an 80-10-10 split and 

trainlm as the training function. 

 

 

Figure 9. The fitness convergence curve using GWOANN. 
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Table 8. Performance indices of ANN and GWOANN for multiple damage scenarios. 

Method MSE R values 

ANN 0.3318 0.99879 

GWOANN 0.2198 0.9992 

Figure 10 indicates that a superior agreement between the target and predicted values 

using two methods. The dataset of training, validation, and test, is distributed along a 45-

degree line. R-values for all cases using GWOANN are improved in comparison with using 

ANN. Besides, the mean squared error (MSE) obtained by GWOANN is also lower than that 

of ANN (Table 8) 

  

a. Using ANN b. Using GWOANN 

Figure 10. Regression plots (Y and T are Output and Target) 

  

a. Using ANN b. Using GWOANN 

Figure 11.  Error histogram. 



Transport and Communications Science Journal, Vol. 73, Issue 1 (01/2022), 1-15 
 

13 

 

Errors between the predicted and target values are depicted on the error histogram (see 

Figure 11). It can be observed that GWOANN has much more errors that spread around the 

zero error value in comparison with using ANN. From all the discussed points, GWOANN is 

able to identify a better structure for ANN using an optimization procedure. 

The obtained optimal structure of ANN then was used for damage localization and 

quantification using unlearnt data from damage scenarios in Table 6. Damage identifications 

are plotted in Figure 12. Both methods can exactly predict the damaged elements. Due to the 

high noise mentioned above, there are slight differences between the observed and estimated 

severities. Details of the identified extent of damage are shown in Table 9. Only the predicted 

value by ANN in the first case shows a better agreement with the desired value over using 

GWOANN (see Figure 12a). It can be seen that the deviation in the predicted levels between 

ANN and GWOANN is very low, 0.04%. Both methods perform the same prediction in the 

third case (see Figure 12c). The other cases reveal that the performance of GWOANN is 

better than that of ANN (see Figure 12b,d-e). Generally speaking, most of the predictions 

using GWOANN are closer to the actual damage levels compared with ANN. This result once 

again confirms the feasibility and effectiveness of GWOANN in improving the performance 

of ANN. 

   

a. Damaged elements: 6 & 7 b. Damaged elements: 6 & 8 c. Damaged elements: 6 & 10 

   

d. Damaged elements: 7 & 11 e. Damaged elements: 8 & 10 f. Damaged elements: 9 & 11 

Figure 12.  Results of multiple damage detection using ANN, GWOANN.  

 

Table 9. Results of damage quantification. 

Damage level  

(%) 

Damage scenarios 

CS1 CS2 CS3 CS4 CS5 CS6 

Desired value 35.5 30.5 33.4 32.5 25.3 37.5 

Using ANN 35.57 30.74 33.26 31.85 25.84 37.81 

Using GWOANN 35.61 30.68 33.26 32.35 25.5 37.41 
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4. CONCLUSION 

This paper introduces an optimization-based approach that can be used effectively in 

structural damage detection with a simple implementation. The obtained results confirmed: 

- Superior agreement between calculated and measured model is achieved by an 

optimization process using measurement data. The maximum discrepancies in 

frequencies are 0.23%, while the others less than 0.04%.  

- A suitable architecture of ANN can be achieved based on an explicit calculation 

instead of the experience or perspective of an engineer.  

- The achieved MSE, R-values, and error histogram are the obvious proofs that affirm 

the global search-ability of GWOANN in enhancing the performance of ANN 

- The damaged elements can be exactly localized even white Gaussian noise 

contaminates the training data.  

- The gap between actual and predicted damage levels is significantly alleviated by 

using GWOANN compared with ANN.  

- Finally, the proposed approach generates a superior link between the damage index 

and damage quantification. This connection can not be obtained if using only the 

damage index. 

The preliminary results open potential application of the proposed approach for damage 

detection in real structures. 
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