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Abstract. Shear connector (typically shear studs) plays a vital role as a transfer zone between 

steel and concrete in steel-concrete composite bridge girder. In the previous studies, the 

connection between steel beam and reinforced concrete slab were considered as continuous 

joint. However, in practice, this connection is discrete, which allows the slipping and peeling 

phenomenon between two layers (the influence of peeling is usually very small and could be 

ignored). To reflect this actual working mechanism, this study proposed a model of shear 

connection in the form of discrete points at the actual positions of studs for structural analysis. 

The model was simulated utilizing Timoshenko beam theory considering transverse shear 

effects. The numerical applications are carried out in order to compare two types of 

connections. The obtained results indicated that the proposed model properly reflected the 

actual performance of the structure and in some necessary cases, we should consider discrete 

connection for more accurate local results. 
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1. INTRODUCTION  

The steel-concrete composite bridge is a flexible combination of two material including 

steel and concrete [1–3]. In this structure, the advantages of the high tensile strength of steel 

materials and high compressive strength of concrete materials are combined and work 
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together via shear connectors [1,4]. The mechanical behaviour of the steel-concrete composite 

bridge strongly depends on the behaviour of shear connector. Thus, properly analysing the 

working mechanism of shear connector is a critical and meaningful task for evaluating the 

working performance of the steel-concrete composite bridge [5,6].  

Generally, the steel and concrete layers are often linked utilizing  connectors such as 

shear studs or nails [1]. Several phenomena such as slip and uplift can appear interface zone, 

while the uplift is significant small [7,8]. Interlayer slip affects strongly the behaviour of the 

steel-concrete composite bridge design and needs to be considered. This phenomenon is 

called partial interaction, a crucial matter in composite structure [9,10]. In addition, a 

composite beam consist of partial interaction has a greater deflection compared to that of the 

beam with full interaction due to a reduction of composite action and stiffness of composite 

beams. It is therefore unsafe to overlook the impact of interface slip on the deflection of 

composite beams with partial interaction [11–13]. 

 

Figure 1. Bond models. 

Over the past several decades, numerous analytical and numerical models characterized 

by different levels of approximation have been proposed in the literature [8,14–16]. The first 

formulation has been proposed for the geometrically linear analysis of elastic composite 

beams with partial interaction is commonly attributed to Newmark et al. [14]. They adopted 

the Euler-Bernoulli kinematic assumptions for both the concrete slab and the steel profile and 

considered a continuous and linear relationship between the relative interface displacements 

(continuous bond) and the corresponding interface shear stresses. The model was then 

developed by some researcher to formulate theoretical models for the static response of 

composite beams in the linear elastic [8,15,16] . Recently, Saje et al. [17] developed a finite 

element formulation for non-linear analysis of two-layer composite planar frames with an 

interlayer slip. It is assumed that the beam components obey the non-linear Reissner’s beam 

theory. Schnabl et al. [18] propose a new locking-free strain based finite element formulation 

based on Timoshenko’s beam theory for the linear static analysis of two-layer composite 

beam in partial shear interaction. A new analytical solution is presented for the analysis of the 

geometrically and materially linear two-layer beams with interlayer slip [19]. The application 

of the proposed method is illustrated in a simply supported beam with uniform load.  
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It can be found in the literature that the mechanical shear connection is modelled by adopting 

either the concentrated springs at connector locations (namely discrete bond model) or the 

distributed springs (namely continuous bond model, Fig. 1b). Indeed, the discrete bond model 

seems to describe the true nature of the connection of the usual two-layer beams (Fig. 1c). 

However, it requires a large number of elements, especially in the case of dense connection. 

Only a few authors have considered the discrete bond model to analyse the behaviour of 

composite beam [20]. Therefore, the objective of this paper is to simulate the behaviour of 

composite beams using two kind of bond in which the discrete bond model can reflect the 

actual performance of the structure. 

2. BASICS EQUATIONS  

As a matter of principle, the behaviour of a deformable body must satisfy three basics 

conditions consist of compatibility, equilibrium, and material constitutive laws (force-

deformation relation) 

The following assumptions are introduced in this study: 

 Euler-Bernoulli's kinematic assumptions hold for concrete slab and Timoshenko's ones 

apply to steel joist; therefore, both layers do not have the same rotation and curvature. 

 All displacements and strains are small, so that the following models can be 

formulated in the linear-geometric analysis. 

 Slip can occur at the slab/joist interface but no transverse separation, i.e., two layers 

have the same transverse displacement. 

 The interface steel-concrete connection is modeled by the spring elements 

(discrete/continuous). All variables subscripted with “c” belong to the concrete slab 

section and those with “s” belong to the steel beam. The quantities with “st” and “sc” 

are associated with the discrete and distributed bond, respectively. 

2.1. Compatibility 

Figure 2 shows the model of the steel-concrete composite girder bridge. The Euler-

Bernoulli theory is employed for the above concrete slab due to its small thickness, whereas 

the Timoshenko theory (considering the horizontal shear strain) is applied for the steel girder.  

Based on the above assumptions, the axial, shear, and flexural (curvature) deformations at 

any sections are related to the beam displacements as follows: 

 ( , )i
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i s c

dx
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where i  and iu  are the axial strain component and the longitudinal displacement at the 

reference axis of layer i , respectively; s  is the strain of layer i , v  is the transverse 
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displacement, s  and i  are the cross-section rotation and the curvature of layer i , 

respectively; scd  is the interlayer slip along the interface; ( , )ih i s c  is the distance from the 

neutral axis of layer i  to the slab bottom. 
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Figure 2. Kinematics of a shear deformable two-layer beam. 

2.2. Equilibrium 

 Equilibrium equations in case of distributed bond 

A free body diagram of a differential element of composite beam subjected to a 

distributed transverse load yp  is considered (see Fig. 3). For the element to be in equilibrium, 

the following equations must be satisfied: 

 

 
Figure 3. Composite beam segment with distributed bond. 

For the steel layer: 
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For the concrete layer: 
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where iN , iT , iM  (i=s, c) are the axial forces, the shear forces and bending moments 

acting in layer i (steel beam or concrete slab). scD  is the longitudinal bond force and scV  the 

contact force acting on the connector per unit length. 

 Equilibrium equations in case of discrete bond 

Due to the discrete nature of the shear connection, the stress resultants of the connected 

layer are discontinuous with "jumps" at each connector location. To derive the equilibrium 

conditions for a two-layer beam with discrete shear connection, it is necessary to consider 

separately the equilibrium of an infinitesimal unconnected beam segment and the equilibrium 

at the cross-section containing shear connectors.  

The first set of equilibrium equations, which apply between two consecutive connectors, 

is readily obtained by expressing the equilibrium of an infinitesimal unconnected two-layer 

beam segment of length dx , and subjected to an external distributed load (see Fig. 4). 
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Figure 4. Composite beam segment with discrete bond. 

For the composite beam element without connector, the equilibrium conditions can be 

written in the following form: 
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For the connector element, the equilibrium conditions are: 

 c c c stN N N Q      (17) 

 s S S stN N N Q       (18) 

 c c c c stM M M h Q      (19) 

 s S S s stM M M h Q      (20) 

where stQ is the discrete bond force. 

2.3. Force-deformation relations 

We adopt a linear stress-strain relationship at the material level and deduce the following 

constitutive law for the cross-section of each layer:  
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i i i i i
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where iE , iA , iI  (i = s; c) are the elastic modulus, the area and the second moment of 

area of cross-section i, sG  is the shear modulus of steel beam. 

3. METHOD OF SOLVING EQUATIONS 

3.1. Closed-form solution for the distributed bond model 

The relationships introduced in the section 2.1 are now combined to derive the equations 

governing the behavior of a shear-deformable two-layer composite beam with partial 

interaction. In particular, differentiating the Eqs. (3, 4), and combining with the relation (23), 

the following relation is obtained 
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By combing the above equations with the Eqs. (2) and (22) we obtain 
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Moreover, differentiating Eqs. (8) and (11) then combining and using Eqs. (7,10) lead to. 
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Where 

 
1 1 1

s cEI EI EI
   (28) 

Furthermore, the equilibrium Eq. 27 is differentiated one more time, after taking the Eq. 

(7, 10) and then combined with the Eq. (28) to provide: 
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Differentiating twice the Eqs. (21, 23) and then introducing into the Eq. (5) leads to 
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By using the equilibrium relationships (6) and (9), differentiating Eqs. (8, 11) and using 

Eqs. (7, 10), the above equation can be finally transformed as follows: 
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1c yc s s c x sc
sc x sc

c s c s c sc

h ph h h h D
V D

EI EI EI EA EI EI k

    
         

   
         (31) 

Where  

 
1 1 1

s cEA EA EA
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Note that the differential Eqs. (30) and (31) involve two unknown variables: the interface 

shear bond force scD  and the uplift force scV . To solve analytically these equations, we need 

to consider two cases depending on the value of c s

c s

h h

EI EI
   . These variables can be 

solved analytically. Once the expression for scD  and scV  are determined, the analytical 

expressions for the remaining mechanical variables can be obtained by using the equilibrium,  

3.2. Closed-form solution for the discrete bond model 
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The relationships, equilibrium equations, compatibility equations and constitutive 

relations introduced in the previous sections can be combined to derive the differential 

equations that governs the behaviour of the shear-deformable two-layer beam with discrete 

shear connection. To do so, we consider separately an unconnected two-layer beam segment 

and a connector element in order to keep the continuous quantities of the variables within 

each element. 

By using the equilibrium relationships (6, 9, 8) and the compatibility Eqs. (1, 3, 4) the Eq. 

(6) can be  

 3 2 2 2

x x xx s s cv          (33) 

where the shear deformations s s and the cross-section rotations i  are eliminated using 

relations (22) and (23) to give: 

 

2 2 2

3 x x xs s c
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s s c

T M M
v
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  
     (34) 

The above Eq. (33) is differentiated one more time; then, the equilibrium Eqs. (15) and 

(16) are used to eliminate the layer bending moments iM . Moreover, by using the equilibrium 

Eq. (14) to eliminate the shear force Ts, one obtains a differential equation involving only the 

uplift force scV , which is the primary unknown of the problem: 

 

2

x sc ysc

s c

V pV

GA EI EI


    (35) 

Where  

 
1 1 1

s cEI EI EI
   (36) 

It can be seen that scV  determined through Eq.(35). Once the analytical expression for scV  

is determined, the analytical expressions for displacements and the other internal forces can 

be derived by inserting scV  back into the governing equations. 

The Matlab programming is used for solving problems based on the above system of 

equations.  

4. NUMERICAL EXAMPLES AND DISCUSSIONS 

4.1. Example 1  

In this example, we use a simply-supported composite beam tested by Aribert et al. [20] 

was employed. This beam was a part of a series of tests aimed to investigate the effect of 

partial interaction on the behaviour of composite beams. The geometric characteristics and the 

material properties of the beam are shown in Fig. 5. The beam has a span length of 5000 mm 

and is loaded by a single concentrated force at midspan. The steel section of the beam is IPE 

330 reinforced at the bottom by a steel plate of 120 × 8 mm2. The slab is 800 mm wide and 

100 thick, longitudinally reinforced by 5 steel bars of 14 mm diameter at the mid-depth. The 

prediction of the proposed analytical models is compared against the existing well-known 
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Newmark's model [14] in which each layer is modelled according to Bernoulli assumptions 

and is continuously connected.  
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Figure 5. Geometrical and mechanical characteristics of Aribert's beam. 

 

Figure 6. Load-deflection curves. 

First, the prediction of the proposed analytical models is compared against the existing 

well-known Newmark's model [14] in which each layer is modelled according to Bernoulli 

assumptions and are continuously connected. Next, the influence of the connection model on 

the structural response of the shear-deformable composite beams was analysed. To do so, the 

beam was modelled on one hand using four continuous bond beam elements which is the 

smallest possible number of elements needed for this simulation. 

Figure 6 shows the load-deflection curves underneath the load point for Newmark model, 

distributed bond (BT-C model) and discrete bond (BT-D model). It can be observed that the 

two analytical responses are different from each other. However, the shear deformability of 

the steel joist induces a slight reduction of the beam stiffness compared to the one provided by 
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the Newmark's model. The Timoshenko beam with continued bond make a different 6,9% 

compared to Bernoulli beam while the one with discrete bond make a reduction of 5,8%. 
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a) Slip distribution along the beam length  
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b) Total bending moment distribution  
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d) Steel bending moment distribution   
 

 

Figure 7. Slip and bending moment distribution along the beam length. 

 

Figure 7a shows the slip distribution along the beam length for a value of the 

concentrated load equal to 195 kN. It can be observed that the transverse shear deformation 

does not significantly affect the slip distribution. Indeed, the slip distribution predicted by the 

Newmark model almost coincide with the one obtained with the present model with 

continuous representation of the shear connection. It can be observed that the load-slip curve 

for the discrete connection model is not smooth at the connector locations. Indeed, the 

derivative of load-slip curve is discontinuous.  

The same phenomena are observed in terms of bending moment distribution for two 

layers: significant discontinuities under discrete bond (Fig. 7b, c, d). The observed results are 

not much different compared to the one of Newmark's model but there is a significant gap at 

the position of supports. This comes from the fact that the bending moment distribution for 

each layer is discontinuous due to jumps in bond forces as we can see in Eqs (19), (20).. 
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4.2. Example 2 

The calculated bridge is Tien Phong bridge, located in Thuong Tin district, Hanoi city 

[21]. The bridge structure includes 3 continuous spans using steel-reinforced concrete 

structure in association with the diagram (20+24+20) m (see Fig. 8). The high of steel beam 

and the average thickness of the slab are 1 m and 0.205 m, respectively. Link connectors are 

pairs of studs with height h = 0.12 m, diameter = 0.2 m and space = 0.3m. 

 

Figure 8. General view of Tien Phong Bridge. 

With low traffic volume, the bridge design live load is 0.75HL-93 according to 

TCVN11823: 2017 bridge design standard (equivalent to AASHTO). The deadload is self-

weight, wearing surfaces and utilities.  

 

Figure 9. Force and deformation diagrams of composite beam bridges In this section, the 

discrete bond model is considered. The aim of this section is to examine in more detail the 

influence of the connection model on the behaviour of continuous beams. The composite 

girder with point link at the spring position was calculated utilizing the horizontal distribution 

coefficient. The results of bending moment, shear force, beam deflection and beam shear slip 

between two material layers, steel beam and concrete slab in the middle of the middle span 

are given in Fig. 9. 
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We can observe that the distribution of bending moment, shear force, deflection and slip 

totally fit the one of continuous beam.  Only a light jump can be noticed at the spring position 

because the connection is dense. It can be concluded that replacing a continuous connection 

by a discrete one does not much change the global response. However, with discrete bond 

model, the number of elements cannot be smaller than the rank number of connectors minus 

one. In this example, the concrete slab is connected to the steel beam by 215 ranks of two 

connectors. Therefore 214 is the smallest number of elements we can use in the case of 

discrete bond. Indeed, the discrete bond model seems to describe the true nature of the 

connection of the usual composite steel-concrete beams. However, it requires a large number 

of elements, especially in the case of dense connection. Moreover, when analyzing in detail, it 

is necessary to use discrete model to calculate connectors. 

5. CONCLUSIONS 

The paper presented a method for calculating beam bridges by using model of interaction 

between connectors and reinforced concrete slab. The following conclusions can be drawn 

from the present study. 

In the calculation of the associated beam, the model of the discrete point connection at 

the spring position together with the Timoshenko beam theory considering horizontal shear 

strain has provided accurate results and accurately reflects the actual performance of the 

structure. The results were compared with the continuous point alignment and the Newmark 

model. The compared results with simple beams show the deflection of the beam Timoshenko 

with continued bond make a different 6.9% compared to beam Bernoulli while the one with 

discrete bond makes a reduction of 5.8%. 

Using the discrete point connection model at the linked anchor points was made for the 

continuous span girder, showing the applicability in practical calculation of the structure. 

Discrete point topology model at connection spring performing for continuous span bridge 

beams has indicated the applicability in practice of structural calculation. 
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