EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR TWO-DIMENSIONAL FRACTIONAL NON-COLLIDING PARTICLE SYSTEMS

Vu Thi Huong

1University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam.

ARTICLE INFO
TYPE: Research Article
Received: 5/11/2019
Revised: 2/12/2019
Accepted: 5/12/2019
Published online: 31/1/2020
https://doi.org/10.25073/tcsj.71.1.2

* Corresponding author
Email: vthuong@utc.edu.vn; Tel: 0902832246

Abstract. In this paper, we consider the stochastic evolution of two particles with electrostatic repulsion and restoring force which is modeled by a system of stochastic differential equations driven by fractional Brownian motion where the diffusion coefficients are constant. This is the simplest case for some classes of non-colliding particle systems such as Dyson Brownian motions, Brownian particles systems with nearest neighbour repulsion. We will prove that the equation has a unique non-colliding solution in path-wise sense.

Keywords: stochastic differential equation, fractional Brownian motion, non-colliding particle systems.

© 2020 University of Transport and Communications

1. INTRODUCTION

It is known that the systems of SDEs driven by standard Brownian motion describing positions of d ordered particles evolving in R has the form

$$dx_i(t) = \left\{ \sum_{j \neq i} \frac{y_{ij}}{x_i(t) - x_j(t)} + b_i(t,x(t)) \right\}dt + \sum_{j=1}^{m} \sigma_{ij}(x(t))dW_j(t), i = 1...d, \quad (1)$$

where $W = (W_1(t), W_2(t),..., W_m(t))$ is a m-dimensional standard Brownian. The system of SDEs (2) is a type of SDEs whose solution stays in a domain which has been studied by many
authors because of its important applications in physics, biology and finance [1]. In mathematical physics, the process $x(t)$ is used to model systems of non-colliding particles with electrostatic repulsion and restoring force. It contains Dyson Brownian Motions, Squared Bessel particle systems, Jacobi particle systems, non-colliding Brownian and Squared Bessel particles, potential-interacting Brownian particles and other particle systems crucial in mathematical physics and physical statistics [2, 3]. The existence and uniqueness of a strong non-colliding solution to such kind of systems have been intensively studied by many authors ([4, 5, 6, 7] and the references therein). But there are no results in the case of fractional non-colliding particles.

The main aim of this paper is to study the two-dimensional fractional non-colliding particle systems

$$
\begin{align*}
 dX_1(t) &= \left(\gamma X_1(t) + b_1(t, X(t))\right) dt + \sum_{j=1}^{m} \sigma_{ij} dB_j^H(t), \\
 dX_2(t) &= \left(\gamma X_2(t) + b_2(t, X(t))\right) dt + \sum_{j=1}^{m} \sigma_{ij} dB_j^H(t),
\end{align*}
$$

(2)

where $X(0) = (X_1(0), X_2(0)) \in \Delta_2 = \{x = (x_1, x_2)^T \in \mathbb{R}^2 : x_1 < x_2\}$ almost surely (a.s) and $B = (B^H(t), t \geq 0) = (B_1^H(t), B_2^H(t), ..., B_m^H(t))^T$ is an m-dimensional fractional Brownian motion with the Hurst parameter $H \in (\frac{1}{2}, 1)$ defined on a complete probability space (Ω, \mathcal{F}, P) with a filtration $\{\mathcal{F}_t, t \geq 0\}$ satisfying the usual conditions. We prove that equation (1) has a unique non-colliding solution in path-wise sense. To the best of my knowledge, this is the first paper to discuss the fractional non-colliding particle systems.

2. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION

Fix $T > 0$ and we consider eq. (1) on the interval $[0, T]$. We suppose that the coefficients $b_i : [0; +\infty) \times \mathbb{R}^2 \to \mathbb{R}$ are measurable functions and there exist positive constants L, C such that following conditions hold

(i) $X(0) \in \Delta_2$ almost surely.

(ii) $\gamma > 0$.

(iii) $b_i(t,x), i = 1, 2$ are globally Lipschitz continuous with respect to x, that is

$$
\sup_{i=1,2} \left| b_i(t,x) - b_i(t,y) \right| \leq L \|x - y\|,
$$

for all $x, y \in \mathbb{R}^2$ and $t \in [0,T]$.

(iv) $b_i(t,x), i = 1, 2$ are sub-linearly growth with respect to x, that is

$$
\sup_{i=1,2} \left| b_i(t,x) \right| \leq C(1+|x|),
$$

for all $x \in \mathbb{R}^2$ and $t \in [0,T]$.

(v) $b_1(t,x) < b_2(t,x)$ for all $x \in \mathbb{R}^2$ and $t \in [0,T]$.

12
Denote $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$. For each $n \in \mathbb{N}$, we consider the following fractional SDEs

$\begin{align*}
 dX_1^n(t) &= \left(\frac{\gamma}{X_i^n(t) - X_2^n(t)} \land \frac{1}{n} + b_1(t, X^n(t))\right) dt + \sum_{j=1}^m \sigma_{1j} dB_{j}^H(t), \\
 dX_2^n(t) &= \left(\frac{\gamma}{X_2^n(t) - X_1^n(t)} \lor \frac{1}{n} + b_2(t, X^n(t))\right) dt + \sum_{j=1}^m \sigma_{2j} dB_{j}^H(t),
\end{align*}$

(3)

where $X^n(0) = (X^n_i(0), X^n_2(0)) \in \Delta_2$. For each $n \in \mathbb{N}$ and $x = (x_1, x_2)$ we set

$f_1^n(t, x) = \frac{\gamma}{(x_1 - x_2) \land \frac{1}{n}} + b_1(t, x),$

$f_2^n(t, x) = \frac{\gamma}{(x_2 - x_1) \lor \frac{1}{n}} + b_2(t, x).$

Lemma 2.1. For each $T > 0$, eq. (3) has a unique solution on $[0, T]$.

Proof: Using the estimate $|a \lor c - b \lor c| \leq |a - b|, |a \land c - b \land c| \leq |a - b|$, it is straightforward to verify that

$|f_1^n(t, x) - f_1^n(t, y)| \leq (\sqrt{2} \gamma n^2 + L) |x - y|,$

for all $x = (x_1, x_2)$ and $t \in [0, T]$ and

$|f_1^n(t, x)| \leq n \gamma + C(1 + |x|).$

It means that coefficients of eq. (3) satisfy Lipschitz continuity and boundedness condition. Hence it follows from Theorem 2.1 in [8] that eq. (3) has a unique solution on the interval $[0, T]$.

We recall a result on the modulus of continuity of trajectories of fractional Brownian motion ([9])

Lemma 2.2. Let $B = \{B^H(t), t \geq 0\}$ be a fractional Brownian motion of Hurst parameter $H \in (0, 1)$. Then for every $0 < \varepsilon < H$ and $T > 0$, there exists an event $\Omega_{e,t}$ with $P(\Omega_{e,t}) = 1$, and a positive random variable $\eta_{e,t}$ such that $E(\eta_{e,t}^p) < \infty$ for all $p \in [1, \infty)$ and for all $s, t \in [0, T]$,

$|B^H(t, \omega) - B^H(s, \omega)| \leq \eta_{e,t}(\omega)|t - s|^{H - \varepsilon},$ for any $\omega \in \Omega_{e,t}$.
We denote
\[\tau_n = \inf\{ t \in [0,T] : \left| X^n_2(t) - X^n_1(t) \right| \leq \frac{1}{n} \} \wedge T. \]

In order to prove that eq. (1) has a unique solution on \([0,T]\), we need the following lemma.

Lemma 2.3. The sequence \(\tau_n \) is non-decreasing, and for almost all \(\omega \in \Omega \), \(\tau_n(\omega) = T \) for \(n \) large enough.

Proof. Using the estimate \(-(a \wedge b) = -a \vee -b \), from eq. (3) we have
\[
d(X^n_2(t) - X^n_1(t)) = \left(\frac{2\gamma}{(X^n_2(t) - X^n_1(t))} \wedge \frac{1}{n} \right) \, dt + \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{1j}) dB^H_j(t). \]

We set \(Y^n(t) = X^n_2(t) - X^n_1(t) \). Eq. (4) becomes
\[
d(Y^n(t)) = \left(\frac{2\gamma}{Y^n(t)} \wedge \frac{1}{n} \right) \, dt + \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{1j}) dB^H_j(t). \quad (5) \]

Then \(Y^n(0) > 0 \) and \(\tau_n = \inf\{ t \in [0,T] : \left| Y^n(t) \right| \leq \frac{1}{n} \} \wedge T. \)

It follows from Lemma 2.2 that for any \(\varepsilon \in (0,H - \frac{1}{2}) \), there exist a finite random variable \(\eta_{\varepsilon,T} \) and an event \(\Omega_{\varepsilon,T} \in \mathcal{F} \) which do not depend on \(n \) such that \(P(\Omega_{\varepsilon,T}) = 1 \), and
\[
\left| \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{1j}) (B^H_j(t, \omega) - B^H_j(s, \omega)) \right| \leq \eta_{\varepsilon,T}(\omega) \left| t - s \right|^{H-\epsilon}, \text{ for any } \omega \in \Omega_{\varepsilon,T} \text{ and } 0 \leq s < t \leq T. \quad (6) \]

We will adapt the contradiction method in [10]. Assume that for some \(\omega_0 \in \Omega_{\varepsilon,T}, \tau_n(\omega_0) < T \) for all \(n \in \mathbb{N} \). By virtue of the continuity of sample paths of \(Y^n \), it follows from the definition of \(\tau_n \) that \(Y^n(\tau_n(\omega_0), \omega_0) = \frac{1}{n} \) and \(Y^n(t, \omega_0) \geq \frac{1}{n} \) for all \(t \in [0, \tau_n(\omega_0)] \). Denote
\[\kappa_n(\omega_0) = \sup\{ t \in [0, \tau_n(\omega_0)] : Y^n(t, \omega_0) \geq \frac{2}{n} \}. \]

We have
\[
\frac{1}{n} \leq Y^n(t, \omega_0) \leq \frac{2}{n}, \text{ for all } t \in [\kappa_n(\omega_0), \tau_n(\omega_0)]. \]

In order to simplify our notations, we will omit \(\omega_0 \) in brackets in further formulas. We have
\[
Y^n(\tau_n) - Y^n(\kappa_n) = -\frac{1}{n} \int_{\kappa_n}^{\tau_n} \left(\frac{2\gamma}{Y^n(s)} + b_2(s, X^n(s)) - b_1(s, X^n(s)) \right) \, ds + \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{1j}) (B^H_j(\tau_n) - B^H_j(\kappa_n)). \]

This implies
\[
\left| \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{y}) (B_j^H (\tau_n) - B_j^H (\kappa_n)) \right| = \left| \frac{1}{n} + \int_{\kappa_n}^{\tau_n} \left(\frac{2\gamma}{Y^n(s)} + b_2(s, X^n(s)) - b_1(s, X^n(s)) \right) ds \right|. \tag{7}
\]

Note that for all \(s \in [\kappa_n, \tau_n] \)
\[
\frac{2\gamma}{Y^n(s)} + b_2(s, X^n(s)) - b_1(s, X^n(s)) \geq 4n\gamma.
\]

Then for all \(n \geq n_0 = \frac{2}{Y^n(0)} \), it follows from eq. (7) that
\[
\left| \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{y}) (B_j^H (\tau_n) - B_j^H (\kappa_n)) \right| \geq \frac{1}{n} + 4n\gamma (\tau_n - \kappa_n).
\]

This fact together with eq. (6) implies that
\[
\eta_{x,t} |\tau_n - \kappa_n|^{\mu - \varepsilon} \geq \frac{1}{n} + 4n\gamma (\tau_n - \kappa_n), \text{ for all } n \geq n_0 \tag{8}
\]

By following similar arguments in the proof of Theorem 2 in [10], we see that the inequality (8) fails for all \(n \) large enough. This contradiction completes the proof of the lemma.

We consider the process \(\{ X(t) = (X_1(t), X_2(t)) \}_{t \geq 0} \) which satisfies equation (1). Now, we set \(Y(t) = X_2(t) - X_1(t) \), then \(Y(t) \) satisfies the following equation
\[
d(Y(t)) = \left(\frac{2\gamma}{Y(t)} + b_2(t, X(t)) - b_1(t, X(t)) \right) dt + \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{1j}) dB_j^H (t). \tag{9}
\]

Lemma 2.4. If eq. (1) has a solution then \(Y(t) = X_2(t) - X_1(t) > 0 \) for all \(t \in [0,T] \) almost surely.

Proof. We will also use the contradiction method. Assume that for some \(\alpha_0 \in \Omega \), \(\inf_{[0,T]} Y(t, \alpha_0) = 0 \). Denote \(\tau = \inf \{ t : Y(t, \alpha_0) = 0 \} \). For each \(n \geq 1 \) we denote \(\nu_n = \sup \{ t < \tau : Y(t, \alpha_0) = \frac{1}{n} \} \). Since \(Y \) has continuous sample paths, \(0 < \nu_n < \tau \leq T \) and \(Y(t, \alpha_0) \in (0, \frac{1}{n}) \) for all \(t \in (\nu_n, \tau) \). We have
\[
Y(\tau) - Y(\nu_n) = -\frac{1}{n} = \int_{\nu_n}^{\tau} \left(\frac{2\gamma}{Y(s)} + b_2(s, X(s)) - b_1(s, X(s)) \right) ds + \sum_{j=1}^{m} (\sigma_{2j} - \sigma_{1j}) (B_j^H (\tau) - B_j^H (\nu_n)).
\]

Note that for all \(s \in [\nu_n, \tau] \)
\[
\frac{2\gamma}{Y(s)} + b_2(s, X(s)) - b_1(s, X(s)) \geq 2n\gamma.
\]

So we have
Again using the inequality (6), we have
\[\eta_{\varepsilon,T} \left| \tau - \nu_n \right|^{\mu-\varepsilon} \geq \frac{1}{n} + 2n\gamma (\tau - \nu_n). \]
(11)

Similar to the argument of Theorem 2 in [10] we see that the inequality (11) fails for all \(n \) large enough. This contradiction completes the lemma.

Based on above lemmas we obtain the main theorem of this paper which is stated as follows

Theorem 2.5. For each \(T > 0 \) eq. (1) has a unique solution on \([0, T]\).

Proof. First, from Lemma 2.3, there exists a finite random variable \(n_0 \) such that
\[X^0_n(t) - X^0'_n(t) \geq \frac{1}{n_0} > 0 \] almost surely for any \(t \in [0,T] \). Therefore, the process
\[X^n(t) = (X^n_1(t), X^n_2(t)) \] converges almost surely to a limit, called \(X(t) \) when \(n \) tends to infinity and \(X(t) \) satisfies eq. (1). This fact together with Lemma (2.4) leads to eq. (1) has a strong non-colliding solution.

Next, we show that eq. (1) has a unique solution in path-wise sense. Let \(X(t) \) and \(\overline{X}(t) \) be two solutions of eq. (1) on \([0, T]\). We have
\[\left| X_1(t, \omega) - \overline{X}_1(t, \omega) \right| = \left| \int_0^t \left(\frac{\gamma}{X_1(s, \omega) - X_2(s, \omega)} + b_1(s, X(s, \omega)) - \frac{\gamma}{X_1(s, \omega) - \overline{X}_2(s, \omega)} - b_1(s, \overline{X}(s, \omega)) \right) ds \right| \]
\[\leq \int_0^t \left(\frac{\gamma}{X_1(s, \omega) - X_2(s, \omega)} - \frac{\gamma}{X_1(s, \omega) - \overline{X}_2(s, \omega)} \right) ds + \int_0^t \left| b_1(s, X(s, \omega)) - b_1(s, \overline{X}(s, \omega)) \right| ds. \]
(12)

Using the continuous property of the sample paths of \(X(t) \) and \(\overline{X}(t) \) and Lemma 2.4, we have
\[m_0 = \min_{t \in [0,T]} \{ X_2(t, \omega) - X'_2(t, \omega), \overline{X}_2(t, \omega) - \overline{X}_1(t, \omega) \} > 0. \]

This fact together with the Lipschitz condition of \(b \) leads to
\[\left| X_1(t, \omega) - \overline{X}_1(t, \omega) \right| \leq \int_0^t \frac{\gamma}{m_0^2} \left| X_2(s, \omega) - \overline{X}_2(s, \omega) \right| ds + \int_0^t \left| L X(s, \omega) - \overline{X}(s, \omega) \right| ds. \]
(13)

Similarly, we estimate \(\left| X_2(t, \omega) - \overline{X}_2(t, \omega) \right| \). We obtain
\[
\sum_{i=1}^{2} \left| X_i(t, \omega) - \overline{X}_i(t, \omega) \right| \leq \left(\frac{2 \gamma}{m_0^2} + 2L \right) \int_0^t \sum_{i=1}^{2} \left| X_i(s, \omega) - \overline{X}_i(s, \omega) \right| ds.
\] (14)

It follows from Gronwall’s inequality that
\[
\sum_{i=1}^{2} \left| X_i(t, \omega) - \overline{X}_i(t, \omega) \right| = 0, \quad \text{for all } t \in [0, T].
\]

Therefore, \(X(t, \omega) = \overline{X}(t, \omega) \) for all \(t \in [0, T] \). The uniqueness has been concluded.

3. CONCLUSION

The main result proved in this paper is the existence and uniqueness of strong non-colliding solution in path-wise sense to the two-dimensional fractional non-colliding particle systems. From this result, we can propose a numerical approximation for this system.

REFERENCES